Analytical expression of intensity for constructive and destructive interference due to Young's double slit

Analytical expression of intensity for interference due to Young's double slit:

Let us consider two waves from slit $S_{1}$ and $S_{2}$ having amplitude $a_{1}$ and $a_{2}$ respectively superimpose on each other at point $P$ . If the displacement of waves is $y_{1}$ and $y_{2}$ and the phase difference is $\phi$ then
$y_{1}=a_{1} \: sin \omega t \qquad(1)$

$y_{2}=a_{2} \: sin \left( \omega t + \phi \right) \qquad(2)$

According to the principle of superposition:

$y=y_{1}+y_{2} \qquad(3)$

Now substitute the value of $y_{1}$ and $y_{2}$ in the above equation $(3)$

$y=a_{1} \: sin \omega t + a_{2} \: sin \left( \omega t + \phi \right)$

$y=a_{1} \: sin \omega t + a_{2} \left( sin \omega t \: cos \phi + cos \omega t \: sin \phi \right) $

$y=a_{1} \: sin \omega t + a_{2} \: sin \omega t \: cos \phi + a_{2}\: cos \omega t \: sin \phi $

$y= \left( a_{1} + a_{2} \: cos \phi \right) \: sin \omega t + a_{2} \: sin \phi \: cos \omega t \qquad(4)$

Let

$a_{1} + a_{2} \: cos \phi = A\: cos\theta \qquad(5)$

$a_{2} \: sin \phi = A\: sin\theta \qquad(6)$

Now the above equation $(4)$ can be written as

$y= A\: cos\theta \: sin \omega t + A\: sin\theta \: cos \omega t $

$y= A \left( cos\theta \: sin \omega t + sin\theta \: cos \omega t \right)$

$y= A \: sin \left( \omega t + \theta \right) \qquad(7)$

This is the equation of the resultant displacement of the waves from slit $S_{1}$ and $S_{2}$ at point $P$ on the screen.

Now square the equation $(5)$ and equation $(6)$ and then add to them so

$ A^{2} \: sin^{2}\theta + A^{2}\: cos^{2}\theta = \left( a_{1} + a_{2} \: cos \phi \right)^{2} + a^{2}_{2} \: sin^{2} \phi $

$ A^{2} \left( sin^{2}\theta + cos^{2}\theta \right) = a^{2}_{1} + a^{2}_{2} \: cos^{2} \phi + 2a_{1} \: a_{2} \: cos\phi + a^{2}_{2} \: sin^{2} \phi $

$ A^{2} = a^{2}_{1} + a^{2}_{2} \left( cos^{2}\phi + sin^{2}\phi \right) + 2a_{1} \: a_{2} \: cos\phi $

$ A^{2} = a^{2}_{1} + a^{2}_{2} + 2a_{1} \: a_{2} \: cos\phi \qquad(8)$

$ A = \sqrt{ a^{2}_{1} + a^{2}_{2} + 2a_{1} \: a_{2} \: cos\phi }\qquad(9)$

Resultant Intensity:

The resultant intensity at point $P$ due waves from slit $S_{1}$ and $S_{2}$ can be find by flollowing formula:

$I=A^{2}$

Now subtitute the va;ue of $A^{2}$ from equation $(8)$ in the above equation

$I= a^{2}_{1} + a^{2}_{2} + 2a_{1} \: a_{2} \: cos\phi \qquad(10)$

$I= I_{1} + I_{2} + 2\sqrt{I_{1} \: I_{2}} \: cos\phi \qquad(11)$

Constructive Interference:

For constructive interference the $cos\phi$ should be equal to +1 i.e. $cos\phi =1$

Phase Difference in Constructive Interference:

We know that for constructive interference $cos\phi =1$

$cos\phi = cos( 2n\pi)$

$\phi = 2n\pi \qquad(12)$

Path difference in Constructive Interference:

We know that the path difference

$\Delta x = \frac{\lambda}{2 \pi} \phi$

Now subtitute the value of $\phi $ from equation $(12)$ in the above equation

$\Delta x = \frac{\lambda}{2 \pi} 2n\pi$

$\Delta x = n \lambda \qquad(13)$

Resultant Amplitude due to Constructive Interference:

For constructive interference, the resultant amplitude is maximum at point $P$. So from equation $(9)$

$ A_{max} = \sqrt{ a^{2}_{1} + a^{2}_{2} + 2a_{1} \: a_{2} } \qquad \left( \because cos\phi =+1 \right)$

$ A_{max} = \sqrt{ \left (a_{1} + a_{2} \right)^{2}} $

$ A_{max} = \left( a_{1} + a_{2} \right) \qquad(14)$

For constructive interference, the resultant amplitude of the waves is the sum of the amplitude of individual waves.

Resultant Intensity due to Constructive Interference:

For constructive interference, the resultant intensity is maximum at point $P$. So from equation $(10)$

$I_{max}= a^{2}_{1} + a^{2}_{2} + 2a_{1} \: a_{2} \qquad \left( \because cos\phi =+1 \right)$

$I_{max}=\left( a_{1} + a_{2} \right)^{2} \qquad(15)$

From equation $(11)$

$I_{max}= I_{1} + I_{2} + 2\sqrt{I_{1} \: I_{2}} \qquad(16)$

Destructive Interference:

For destructive interference the $cos\phi$ should be equal to -1 i.e. $cos\phi = -1$

Phase Difference in Destructive Interference:

We know that for destructive interference $cos\phi = -1$

$cos\phi = cos \left( \left( 2n \pm 1 \right)\pi \right)$

$\phi = \left( 2n \pm 1 \right)\pi \qquad(17)$

Path difference in Destructive Interference:

We know that the path difference

$\Delta x = \frac{\lambda}{2 \pi} \phi$

Now subtitute the value of $\phi $ from equation $(17)$ in the above equation

$\Delta x = \frac{\lambda}{2 \pi} \left( 2n \pm 1 \right)\pi$

$\Delta x = \left( 2n \pm 1 \right) \frac{\lambda}{2} \qquad(18)$

Resultant Amplitude due to Destructive Interference:

For the destructive interference, the resultant amplitude is minimum at point $P$. So from equation $(9)$

$ A_{min} = \sqrt{ a^{2}_{1} + a^{2}_{2} - 2a_{1} \: a_{2} } \qquad \left( \because cos\phi =-1 \right)$

$ A_{min} = \sqrt{ \left (a_{1} - a_{2} \right)^{2}} $

$ A_{min} = \left( a_{1} - a_{2} \right)$

For constructive interference, the resultant amplitude of the waves is the difference in amplitude of individual waves.

Resultant Intensity due to Destructive Interference:

For the destructive interference, the resultant intensity is minimum at point $P$. So from equation $(10)$

$I_{min}= a^{2}_{1} + a^{2}_{2} - 2a_{1} \: a_{2} \qquad \left( \because cos\phi =-1 \right)$

$I_{min}=\left( a_{1} - a_{2} \right)^{2}$

From equation $(11)$

$I_{min}= I_{1} + I_{2} - 2\sqrt{I_{1} \: I_{2}} $

Viscosity, Viscous force and Coefficient of Viscosity

Definition of Viscosity:

It is the property of a fluid that opposes the relative motion between its adjacent layers. This property of the fluid is known as viscosity. It is also called the resistance of fluid to flow or deformation or fluid thickness.

Effect of temperature on Viscosity:

The viscosity of the fluid decreases sharply with the temperature rise and becomes zero at boiling temperature. On the other hand, the viscosity of the gases increases with the temperature rise.
Flow of fluid
Definition of Viscous Force (Internal Frictional Force):

When a layer of fluid slide over another layer of the same fluid then an internal tangential frictional force act between them which opposes the relative motion between the layers. This tangential force is called viscous force or internal frictional force.

In the absence of external force, the viscous force would soon bring the fluid to rest.

Factor affecting the viscous force:

There are the following factors that affect the viscous force-

1.) The viscous force is directly proportional to the contact area of the layers. i.e.

$F \propto A \qquad(1)$

Where $A \rightarrow$ The contact area of the layers

2.) The viscous force is directly proportional to the velocity gradient between the layers. i.e.

$F \propto \frac{\Delta v_{x}}{\Delta z} \qquad(2)$

Where $\frac{\Delta v_{x}}{\Delta z} \rightarrow$ The velocity gradient that is shown in the figure below
The viscous force between the layers
From equation $(1)$ and equation $(2)$

$F \propto A \: \frac{\Delta v_{x}}{\Delta z}$

$F = \pm \: \eta \: A \: \frac{\Delta v_{x}}{\Delta z} \qquad(3)$

Where

$\eta \rightarrow$ It is a constant and also known as the "coefficient of viscosity" of the fluid.

$ \pm \rightarrow$ It indicates that the viscous force $F$ between two layers of fluid is a mutually interacting force. As shown above in figure (B), A layer that is just above layer $A$ exerts a force in the forward direction while a layer that is just below layer $A$ exerts an equal and opposite force i.e. in the backward direction.

Definition of Coefficient of Viscosity:

If $A=1$ and $\frac{\Delta v_{x}}{\Delta z} = 1$, then from equation $(3)$

$\eta = 1$

So from the above equation,  If the contact area and velocity gradient are units then the viscous force between the fluid is known as the coefficient of velocity.

Dimension of coefficient of viscosity:

$\left[ M L^{-1} T^{-1} \right]$

Unit of coefficient of viscosity:

$Kg-m^{-1}s^{-1}$

Here

$1 \: Kg-m^{-1}s^{-1} = 10\: poise = 1 \: decapoise$

Brief Description of Liquid Lasers

Brief Description: (Liquid Lasers)

Due to their homogeneous properties and a very high optical cavity of liquids, these are also used as active materials in lasers. Liquid lasers are four-level lasers that use liquids as active material or lasing medium. In these lasers, laser tubes are filled with liquid instead of laser rods as in solid-state lasers or gas in gas lasers. Liquid laser medium has some advantages like very high gain, no cracking for high output power, feasibility of cooling the liquid by circulation, narrow frequency spectrum, etc. In liquid lasers, optical pumping is required for laser action. Optical pumping includes flash tubes, nitrogen lasers, excimer lasers, etc. A rare earth ion dissolved in a solution makes it possible to obtain optically pumped laser action in liquids. The first successful liquid laser was reported by using europium ions ($Eu^{+3}$) in which a sharp and strong laser transition was observed at $6131 A^{\circ}$ wavelength. In this laser, a europium chelate ($EuB_{4}P$) was prepared with benzovlacetate and dissolved in alcohol to give a europium concentration $1.2 \times 10^{19} centers/cm^{3}$. Due to the high absorption coefficient of chelate, it gives rise to pumping problems and their viscosity is so high that circulating motion is not feasible. The best solution to date is the liquid selenium oxychloride ($SeOCl_{2}$) which has a low refractive index, good optical transmission, and a density comparable to glass but it is highly toxic.

To reduce the problem in laser action due to high viscosity and pumping in chelate, the organic dyes are used as the lasing medium in liquid lasers. Dyes are organic substances that absorb in the near ultraviolet, visible, or near-infrared region of the spectrum. When organic dyes are used as a lasing medium. usually, as a liquid solution, in a laser, it is called a dye laser. Examples of some dyes are rhodamine, coumarin, fluorescein, etc. A variety of solvents can be used in dye lasers. Some of the solvents used are water, glycol, ethanol, methanol, hexane, cyclohexane, etc. The lasers using dyes like coumarin, xanthene, quinoline, etc. emit laser radiations in the range of wavelengths $400-500 \: nm, 500-70O \: nm, 400-4300 \: nm$, etc, respectively. These lasers have broad spectral bandwidth and fluorescent spectrum and emission in any region of the visible spectrum can be chosen from a large number of dyes. These lasers produce ultra-short pulses of half-width than with any other lasers. These lasers are the cheapest and one of the most widely tunable lasers in the visible region. Dye lasers Can be used as solid, liquid, and gas lasers but liquid solutions of dyes are convenient as their concentration can be controlled

Principle of continuity in fluid

Statement of Principle of Continuity:

When an ideal liquid (i.e. incompressible and non-viscous liquid ) flows in streamlined motion through a tube of non-uniform cross-section, then the product of the velocity of flow and area of cross-section is always constant at every point in the tube.

Mathematical Analysis (Proof)

Let us consider, an ideal liquid (i.e. incompressible and non-viscous liquid ) flow in streamline motion through a tube $XY$ of the non-uniform cross-section.
Streamline flow of liquid in a tube
Now Consider:

The Area of cross-section $X = A_{1}$

The Area of cross-section $Y = A_{2}$

The velocity per second (i.e. equal to distance) of fluid at cross-section $X = v_{1}$

The velocity per second (i.e. equal to distance) of fluid at cross-section $Y = v_{2}$

The volume of liquid entering at the cross-section $X$ in $1$ second is = $A_{1}v_{1}$

The mass of liquid entering at the cross-section $X$ in $1$ second is = $ \rho A_{1}v_{1}$

Similarly, the mass of the liquid coming out from the cross-section $Y$ in $1$ second is = $ \rho A_{2}v_{2}$

But the liquid which enters at cross-section $X$ must leave cross-section $Y$. Hence the masses are equal at both cross-section area, that is,

$\rho A_{1}v_{1} = \rho A_{2}v_{2} $

$ A_{1}v_{1} = A_{2}v_{2} $

$A v = constant$

Thus, the above equation shows that at every place in the tube, the product of the area of the cross-section of the tube and the velocity of the flow of the liquid is always the same. Therefore, the velocity of the liquid is smaller in the wider parts of the tube and larger in the narrow parts.
Streamline flow of liquid

Combined Focal Length and Power of two thin lenses in contact

Derivation of the combined focal length and power of two thin lenses in contact:

Case (1): When both are convex lens-

a.) The combined focal length of two thin convex lenses in contact:

Let us consider that two convex lenses $L_{1}$ and $L_{2}$ are connected with transparent cement Canada Balsam. If the focal length of the lenses is $f_{1}$ and $f_{1}$ and an object $O$ is placed at distance $u$ from the first lens $L_{1}$ and its image $I'$ is formed at a distance $v'$ from the first lens $L_{1}$. Therefore from the equation of focal length for lens $L_{1}$
Refraction of light through two combined convex lens
$\frac{1}{f_{1}} = \frac{1}{v'} - \frac{1}{u} \qquad(1)$

For the second lens, The image $I'$ works as a virtual object for the second lens $L_{2}$ which image $I$ is formed at a distance $v$ from the second lens $L_{2}$. Therefore from the equation of focal length for lens $L_{2}$

$\frac{1}{f_{2}} = \frac{1}{v} - \frac{1}{v'} \qquad(2)$

Now add the equation $(1)$ and equation $(2)$. then

$\frac{1}{f_{1}} + \frac{1}{f_{2}} = \frac{1}{v'} - \frac{1}{u} + \frac{1}{v} - \frac{1}{v'} $

$\frac{1}{f_{1}} + \frac{1}{f_{2}} = \frac{1}{v} - \frac{1}{u} $

Where $ \frac{1}{f} = \frac{1}{v} - \frac{1}{u} $

$\frac{1}{f_{1}} + \frac{1}{f_{2}} = \frac{1}{f} \qquad(3)$

$\frac{1}{f} = \frac{f_{1} + f_{2}}{f_{1}f_{2}} $

$f = \frac{f_{1}f_{2}}{f_{1} + f_{2}} $

This is the equation of the combined focal length of two thin convex lenses in contact.

b.)The combined power of two thin convex lenses in contact:

We know that the power of the lens equation

$P = \frac{1}{f}$

So from equation $(3)$

$P=P_{1} + P_{2}$

This is the equation of the combined power of two thin convex lenses in contact.

Similarly for another two cases $(2)$ and case $(3)$:

Case (2): When both are concave lens-

a.) The combined focal length of two thin concave lenses in contact:

For concave lenses the focal length for both lenses i.e. ($f_{1} \: and \: f_{2}$) will be negative. Therefore the combined focal length of the two thin concave lens

$ \frac{1}{f} = \frac{1}{- f_{1}} + \frac{1}{- f_{2}} $

$\frac{1}{f} =- \frac{\left(f_{1} + f_{2} \right)}{f_{1}f_{2}} $

$f = -\frac{f_{1}f_{2}}{f_{1} + f_{2}} $
Refraction of light through two combined concave lens
b.) The combined power of two thin concave lenses in contact:

$P= - \left(P_{1} + P_{2}\right)$

Case (3): When one lens is convex and the second is concave-

a.) The combined focal length of two thin lenses for convex and concave:

If the focal length of convex lens is $f_{1}$ and for concave is $f_{2}$ then the combine focal length of lenses

$ \frac{1}{f} = \frac{1}{ f_{1}} + \frac{1}{- f_{2}} $

$\frac{1}{f} = \frac{\left(f_{1} - f_{2} \right)}{f_{1}f_{2}} $

$f = \frac{f_{1}f_{2}}{f_{1} - f_{2}} $
Refraction of light through two combined convex and concave lens
b.) The combined power of two thin lenses for convex and concave:

$P= \left(P_{1} - P_{2}\right)$

Refraction of light through a thin lens : Lens maker's formula

Derivation of refraction of light through a thin lens & Lens maker's formula:

Let us consider, A convex lens having thickness $t$ and radius of curvature of surfaces is $R_{1}$ and $R_{2}$. If an object $O$ is placed at distance $u$ from the first surface of the convex lens and its image $I'$ is formed at distance $v'$ from the first surface of the convex lens then refraction of light through the first spherical surface of the lens

$ \frac{\left( n_{2} - n_{1} \right)}{R_{1}} = \frac{n_{2}}{v'} - \frac{n_{1}}{u} \qquad(1) $
Refraction of light through thin lens.jpg
Now the Image $I'$ works as a virtual object for the second surface of the convex lens which image $I$ formed at distance $v$ from the second surface of the lens. So refraction of light through the second surface of the lens

$ \frac{\left( n_{1} - n_{2} \right)}{R_{2}} = \frac{n_{1}}{v} - \frac{n_{2}}{v' - t} $

Here $t$ is the thickness of the lens. If the lens is very thin then thickness will be $t=0$. Therefore above equation for second surface of the lens can be written as

$ \frac{\left( n_{1} - n_{2} \right)}{R_{2}} = \frac{n_{1}}{v} - \frac{n_{2}}{v'} \qquad(2) $

Now add the equation $(1)$ and equation $(2)$, So

$\frac{\left( n_{2} - n_{1} \right)}{R_{1}} + \frac{\left( n_{1} - n_{2} \right)}{R_{2}} = \frac{n_{2}}{v'} - \frac{n_{1}}{u} + \frac{n_{1}}{v} - \frac{n_{2}}{v'} $

$\frac{\left( n_{2} - n_{1} \right)}{R_{1}} + \frac{\left( n_{1} - n_{2} \right)}{R_{2}} = - \frac{n_{1}}{u} + \frac{n_{1}}{v} $

$\left( n_{2} - n_{1} \right) \left( \frac{1}{R_{1}} - \frac{1}{R_{2}} \right) =n_{1} \left( \frac{1}{v} - \frac{1}{u} \right) $

$n_{1} \left( \frac{1}{v} - \frac{1}{u} \right) = \left( n_{2} - n_{1} \right) \left( \frac{1}{R_{1}} - \frac{1}{R_{2}} \right) $

$ \left( \frac{1}{v} - \frac{1}{u} \right) = \frac{\left( n_{2} - n_{1} \right)}{n_{1}} \left( \frac{1}{R_{1}} - \frac{1}{R_{2}} \right) $

We know that the equation of the focal length of a lens

$\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$

Where $f \rightarrow$ Focal length of convex lens. Now substitute the value of $f$ in the above equation

$ \frac{1}{f} = \frac{\left( n_{2} - n_{1} \right)}{n_{1}} \left( \frac{1}{R_{1}} - \frac{1}{R_{2}} \right)$

$ \frac{1}{f} = \left( \frac{n_{2}}{n_{1}} - 1 \right) \left( \frac{1}{R_{1}} - \frac{1}{R_{2}} \right)$

$ \frac{1}{f} = \left( n - 1 \right) \left( \frac{1}{R_{1}} - \frac{1}{R_{2}} \right) \qquad \left( \because \frac{n_{2}}{n_{1}}= n\right)$

The above equation represents the equation of refraction of light through a thin lens and lens maker's formula.

Refraction of light through the convex spherical surface

Derivation of refraction of light through the convex spherical surface:

Let us consider, a convex spherical surface which has radius of curvature $R$. If an object $O$ is placed at a distance $u$ from pole $P$ and its image $I$ is formed at distance $v$ from pole $P$ and the angle subtended by the object, image, and center of curvature is $\alpha$, $\beta$, and $\gamma$ then from figure
Refraction of Light through Convex Spherical Surface.jpg
In $\Delta MOC$

$i= \gamma + \alpha \qquad(1)$

In $\Delta MIC$

$r = \gamma + \beta \qquad(2)$

According to Snell's Law:

$\frac{sin \: i}{sin \: r} = \frac{n_{2}}{n_{1}} \qquad(3)$

Here the aperture of the spherical surface is very small so point $M$ will be very close to point $P$ and angle $i$ and $r$ will be small. So

$sin \: i \approx i$
$sin \: r \approx r$

So equation $(3)$ can be written as

$\frac{ i}{ r} = \frac{n_{2}}{n_{1}} \qquad(4)$

Now subtitute the value of $i$ and $r$ from equation $(1)$ and equation $(2)$ in equation $(4)$

$\frac{ \left( \gamma + \alpha \right)}{\left( \gamma + \beta \right)} = \frac{n_{2}}{n_{1}} $

$ \left( \gamma + \alpha \right) n_{1} = \left( \gamma + \beta \right) n_{2} $

$ \gamma \: n_{1} + \alpha \: n_{1} = \gamma \: n_{2} + \beta \: n_{2} $

$ \gamma \: n_{1} - \gamma \: n_{2} = \beta \: n_{2} - \alpha \: n_{1} $

$ \left( n_{1} - n_{2} \right) \gamma = \beta \: n_{2} - \alpha \: n_{1} \qquad(5)$

Again here the aperture of the spherical surface is very small so point $N$ will be very close to point $P$. Therefore the angle $\alpha$, $\beta$, and $\gamma$ will be very small. Then in $\Delta MON$

$\alpha = tan \alpha = \frac {MN}{ON} \approx \frac{MN}{OP} = \frac{h}{-u}$

Similarly for angle $\beta$ and $\gamma$, Apply in $\Delta MIN$ and $\Delta MCN$

$\beta = tan \beta = \frac {MN}{IN} \approx \frac{MN}{IP} = \frac{h}{-v}$

$\gamma = tan \gamma = \frac {MN}{CN} \approx \frac{MN}{CP} = \frac{h}{R}$

Now subtitute the value of $\alpha$, $\beta$, and $\gamma$ from above in equation $(5)$

$ \left( \frac{h}{R} \right) \left( n_{1} - n_{2} \right) = \left( \frac{h}{-v} \right) n_{2} - \left( \frac{h}{-u} \right) n_{1} $

$ \frac{\left( n_{2} - n_{1} \right)}{R} = \frac{n_{2}}{v} - \frac{n_{1}}{u} $

This is the equation of refraction of light through a convex spherical surface.

Another form of the above equation:

$ n_{1} \frac{\left( \frac{n_{2}}{n_{1}} - 1 \right)}{R} = n_{1} \frac{\frac{n_{2}}{n_{1}}}{v} - \frac{1}{u} $

$ n_{1} \frac{\left( \frac{n_{2}}{n_{1}} - 1 \right)}{R} = n_{1} \frac{\left(\frac{n_{2}}{n_{1}}\right)}{v} - \frac{1}{u} $

$ \frac{\left( \frac{n_{2}}{n_{1}} - 1 \right)}{R} = \frac{\left(\frac{n_{2}}{n_{1}}\right)}{v} - \frac{1}{u} $

$ \frac{\left( n - 1 \right)}{R} = \frac{n}{v} - \frac{1}{u} \qquad \left( \because \frac{n_{2}}{n_{1}}= n\right) $

Where $n \rightarrow Refractive \: index \: of \: glass \: with \: respect \: to \: air$

This is another form of the equation of refraction of light through a convex spherical surface.

Refraction of light through the concave spherical surface

Derivation of refraction of light through the concave spherical surface:

Let us consider, a concave spherical surface of radius of curvature $R$. If an object $O$ is placed at a distance $u$ from pole $P$ and its image $I$ is formed at distance $v$ from pole $P$ and the angle subtended by the object, image, and center of curvature is $\alpha$, $\beta$, and $\gamma$ then from figure
Refraction of Light through Concave Spherical Surface.jpg
In $\Delta MOC$

$\gamma= \alpha + i $

$i= \gamma - \alpha \qquad(1)$

In $\Delta MIC$

$\gamma= \beta + r $

$r = \gamma - \beta \qquad(2)$

According to Snell's Law:

$\frac{sin \: i}{sin \: r} = \frac{n_{2}}{n_{1}} \qquad(3)$

Here the aperture of the spherical surface is very small so point $M$ will be very close to point $P$ and angle $i$ and $r$ will be small. So

$sin \: i \approx i$
$sin \: r \approx r$

So equation $(3)$ can be written as

$\frac{ i}{ r} = \frac{n_{2}}{n_{1}} \qquad(4)$

Now subtitute the value of $i$ and $r$ from equation $(1)$ and equation $(2)$ in equation $(4)$

$\frac{ \left( \gamma - \alpha \right)}{\left( \gamma - \beta \right)} = \frac{n_{2}}{n_{1}} $

$ \left( \gamma - \alpha \right) n_{1} = \left( \gamma - \beta \right) n_{2} $

$ \gamma \: n_{1} - \alpha \: n_{1} = \gamma \: n_{2} - \beta \: n_{2} $

$ \gamma \: n_{1} - \gamma \: n_{2} = -\beta \: n_{2} + \alpha \: n_{1} $

$ \left( n_{1} - n_{2} \right) \gamma = -\beta \: n_{2} + \alpha \: n_{1} \qquad(5)$

Again here the aperture of the spherical surface is very small so point $N$ will be very close to point $P$. Therefore the angle $\alpha$, $\beta$, and $\gamma$ will be very small. Then in $\Delta MON$

$\alpha = tan \alpha = \frac {MN}{ON} \approx \frac{MN}{OP} = \frac{h}{-u}$

Similarly for angle $\beta$ and $\gamma$, Apply in $\Delta MIN$ and $\Delta MCN$

$\beta = tan \beta = \frac {MN}{IN} \approx \frac{MN}{IP} = \frac{h}{-v}$

$\gamma = tan \gamma = \frac {MN}{CN} \approx \frac{MN}{CP} = \frac{h}{-R}$

Now subtitute the value of $\alpha$, $\beta$, and $\gamma$ from above in equation $(5)$

$ \left( \frac{h}{-R} \right) \left( n_{1} - n_{2} \right) = - \left( \frac{h}{-v} \right) n_{2} + \left( \frac{h}{-u} \right) n_{1} $

$ \frac{\left( n_{2} - n_{1} \right)}{R} = \frac{n_{2}}{v} - \frac{n_{1}}{u} $

This is the equation of refraction of light through a concave spherical surface.

Another form of the above equation:

$ n_{1} \frac{\left( \frac{n_{2}}{n_{1}} - 1 \right)}{R} = n_{1} \frac{\frac{n_{2}}{n_{1}}}{v} - \frac{1}{u} $

$ n_{1} \frac{\left( \frac{n_{2}}{n_{1}} - 1 \right)}{R} = n_{1} \frac{\left(\frac{n_{2}}{n_{1}}\right)}{v} - \frac{1}{u} $

$ \frac{\left( \frac{n_{2}}{n_{1}} - 1 \right)}{R} = \frac{\left(\frac{n_{2}}{n_{1}}\right)}{v} - \frac{1}{u} $

$ \frac{\left( n - 1 \right)}{R} = \frac{n}{v} - \frac{1}{u} \qquad \left( \because \frac{n_{2}}{n_{1}}= n\right) $

Where $n \rightarrow Refractive \: index \: of \: glass \: with \\ respect \: to \: air$

This is another form of the equation of refraction of light through a concave spherical surface.

Physical Significance of Maxwell's Equations

Physical Significance:

The physical significance of Maxwell's equations obtained from integral form are given below:

Maxwell's First Equation:

1. The total electric displacement through the surface enclosing a volume is equal to the total charge within the volume.

2. It represents Gauss Law.

3. This law is independent of time. Charge acts as source or sink for the lines of electric force.

Maxwell's Second Equation:

1. The total magnetic flux emitting through any closed surface is zero. An isolated magnet do not exist monopoles.

2. There is no source or sink for lines of magnetic force.

3. This is time independent equation.

Maxwell's Third Equation:

1. The electromotive force around the closed path is equal to the time derivative of the magnetic displacement through any surface bounded by the path.

2. This gives relation between electric field $E$ and magnetic induction $B$.

3. This expression is time varying i.e. $E$ is generated by time variation of $B$.

4.This gives relation in variation of E with the time variation of $B$ or $H$.

5. This is a mathematical form of Faraday's law of electromagnetic induction or Lenz's Law.

Maxwell's Fourth Equation:

1. The magneto-motive force around the closed path is equal to the conduction current plus displacement current through any surface bounded by the path.

2. This is time dependent wave equation.

3 This is a mathematical form of Ampere circuital law.

4. Magnetic induction $B$ can be generated from $J$ and time variation of magnetic displacement $D$.

5. This relates the space variation of $B$ with time variation of $D$.

Circuit containing Inductor and Capacitor in Series (L-C Series Circuit )

Mathematical Analysis of L-C Series Circuit :
Alternating Current Circuit Containing Inductor and Capacitor in series
Let us consider, a circuit containing inductor $L$ capacitor $C$ and these are connected in series. If an alternating voltage source is applied across it then the resultant voltage of the L-C circuit

$V=V_{L} - V_{C} \qquad(1)$

We know that:

$V_{L} = iX_{L}$
$V_{C} = iX_{C}$

So from equation $(1)$

$V= iX_{L} - iX_{C} $

$V=i \left(X_{L} - X_{C} \right) $

$\frac{V}{i}=\left(X_{L} - X_{C} \right) $

$Z=\left(X_{L} - X_{C} \right) \qquad(2)$

Where
$Z \rightarrow$ Impedance of L-C circuit.
$X_{L} \rightarrow$ Inductive Reactance which has value $\omega L$
$X_{C} \rightarrow$ Capacitive Reactance which has value $\frac{1}{\omega C}$

So from equation $(2)$, we get

$Z=\left( \omega L - \frac{1}{\omega C} \right) \qquad(3)$

The phase of resultant voltage:
Phasor Diagram For L-C Circuit
The phase of resultant voltage from current is $90^{\circ}$ as shown in the figure above.

The Impedance and Phase at Resonance Condition:($X_{L} = X_{C}$):

At resonance $X_{L} = X_{C} \qquad(5)$

$\omega L = \frac{1}{\omega C}$

$\omega^{2} = \frac{1}{L C}$

$\omega = \sqrt{\frac{1}{L C}}$

$2 \pi f = \sqrt{\frac{1}{L C}}$

$ f = \frac{1}{2 \pi}\sqrt{\frac{1}{L C}}$

Where $f \rightarrow$ Natural frequency of the circuit.

1.) The Impedance of the circuit at resonance condition:

Substitute the resonance condition i.e. $X_{L} = X_{C}$ in equation $(2)$ then the impedance of the L-C Circuit

$Z=0$

The impedance of the L-C circuit at resonance condition is zero.

2.) The Phase of resultant voltage at resonance condition:

There is not any change in the phase of resultant voltage at resonance condition i.e. that will be the same $90^{\circ}$.

Popular Posts

Study-Material













  • Classical world and Quantum world

  • Inadequacy of classical mechanics

  • Drawbacks of Old Quantum Theory

  • Bohr's Quantization Condition

  • Energy distribution spectrum of black body radiation

  • Energy distribution laws of black body radiation

  • The Compton Effect | Experiment Setup | Theory | Theoretical Expression | Limitation | Recoil Electron

  • Davisson and Germer's Experiment and Verification of the de-Broglie Relation

  • Significance of Compton's Effect

  • Assumptions of Planck’s Radiation Law

  • Derivation of Planck's Radiation Law

  • de-Broglie Concept of Matter wave

  • Definition and derivation of the phase velocity and group velocity of wave

  • Relation between group velocity and phase velocity ($V_{g}=V_{p}-\lambda \frac{dV_{p}}{d\lambda }$)

  • Group velocity is equal to particle velocity($V_{g}=v$)

  • Product of phase velocity and group velocity is equal to square of speed of light ($V_{p}.V_{g}=c^{2}$)

  • Heisenberg uncertainty principle

  • Generation of wave function for a free particle

  • Physical interpretation of the wave function

  • Derivation of time dependent Schrodinger wave equation

  • Derivation of time independent Schrodinger wave equation

  • Eigen Function, Eigen Values and Eigen Vectors

  • Postulate of wave mechanics or Quantum Mechanics

  • Quantum Mechanical Operators

  • Normalized and Orthogonal wave function

  • Particle in one dimensional box (Infinite Potential Well)

  • Minimum Energy Or Zero Point Energy of a Particle in an one dimensional potential box or Infinite Well

  • Normalization of the wave function of a particle in one dimension box or infinite potential well

  • Orthogonality of the wave functions of a particle in one dimension box or infinite potential well

  • Eigen value of the momentum of a particle in one dimension box or infinite potential well

  • Schrodinger's equation for the complex conjugate waves function

  • Probability Current Density for a free particle in Quantum Mechanics

  • Ehrenfest's Theorem and Derivation

  • Momentum wave function for a free particle

  • Wave function of a particle in free state

  • One dimensional Step Potential Barrier for a Particle

























  • Blog Archive