Derivation of Maxwell's forth equation

Maxwell's fourth equation is the differential form of Ampere's circuital law.

$\overrightarrow{\nabla} \times \overrightarrow{H} = \overrightarrow{J} + \frac{\partial{\overrightarrow{D}}}{\partial{t}}$

Derivation:

According to Ampere's circuital law

$\oint_{l} \overrightarrow{B}. \overrightarrow{dl}=\mu_{0} i \qquad(1)$

According to Stroke's theorem-

$\oint_{l} \overrightarrow{B}.\overrightarrow{dl}=\oint_{S} (\overrightarrow{\nabla} \times \overrightarrow{B}). \overrightarrow{dS} \qquad(2)$

From equation$(1)$ and equation$(2)$

$\oint_{S} (\overrightarrow{\nabla} \times \overrightarrow{B}). \overrightarrow{dS} = \mu_{0} i \qquad(3)$

where $i=\oint_{S} \overrightarrow{J}. \overrightarrow{dS} \qquad(4)$

So from equation$(3)$ and equation$(4)$

$\oint_{S} (\overrightarrow{\nabla} \times \overrightarrow{B}). \overrightarrow{dS} = \mu_{0} \oint_{S} \overrightarrow{J}. \overrightarrow{dS}$

$\oint_{S} (\overrightarrow{\nabla} \times \overrightarrow{B}). \overrightarrow{dS} - \mu_{0} \oint_{S} \overrightarrow{J}. \overrightarrow{dS}=0$

$\oint_{S} [(\overrightarrow{\nabla} \times \overrightarrow{B}) - \mu_{0} \overrightarrow{J}]. \overrightarrow{dS}=0$

$(\overrightarrow{\nabla} \times \overrightarrow{B}) - \mu_{0} \overrightarrow{J}=0$

$\overrightarrow{\nabla} \times \overrightarrow{B} = \mu_{0} \overrightarrow{J}$

We know that $\overrightarrow{B}=\mu_{0} \overrightarrow{H}$. So the above equation can be again written as-

$\overrightarrow{\nabla} \times \overrightarrow{H} = \overrightarrow{J}$

Modified Maxwell's fourth equation:

The modified Maxwell's fourth equation is the differential form of the modified Ampere's circuital law.

We know the modified Ampere's circuital law-

$\oint_{l} \overrightarrow{B}. \overrightarrow{dl}=\mu_{0} i + i_{d}$

Where $i_{d}$ - Displacement current

So the derivation of the modified Maxwell equation is similar to the above derivation. Therefore the modified Maxwell's fourth equation can be written as-

$\overrightarrow{\nabla} \times \overrightarrow{H} = \overrightarrow{J} + \overrightarrow{J_{d}} \qquad(1)$

Where $\overrightarrow{J_{d}}$ - Displacement current density

And the value of $\overrightarrow{J_{d}}$ is

$\overrightarrow{J_{d}}=\epsilon_{0} \frac{\partial{\overrightarrow{E}}}{\partial{t}}$

$\overrightarrow{J_{d}}=\frac{\partial{\overrightarrow{D}}}{\partial{t}} \qquad(\because \overrightarrow{D}=\epsilon_{0} \overrightarrow{E})$

Now substitute the value of $\overrightarrow{J_{d}}$ in equation $(1)$, then

$\overrightarrow{\nabla} \times \overrightarrow{H} = \overrightarrow{J} + \frac{\partial{\overrightarrow{D}}}{\partial{t}}$

This is modified by Maxwell's fourth equation.

Popular Posts

Study-Material













  • Classical world and Quantum world

  • Inadequacy of classical mechanics

  • Drawbacks of Old Quantum Theory

  • Bohr's Quantization Condition

  • Energy distribution spectrum of black body radiation

  • Energy distribution laws of black body radiation

  • The Compton Effect | Experiment Setup | Theory | Theoretical Expression | Limitation | Recoil Electron

  • Davisson and Germer's Experiment and Verification of the de-Broglie Relation

  • Significance of Compton's Effect

  • Assumptions of Planck’s Radiation Law

  • Derivation of Planck's Radiation Law

  • de-Broglie Concept of Matter wave

  • Definition and derivation of the phase velocity and group velocity of wave

  • Relation between group velocity and phase velocity ($V_{g}=V_{p}-\lambda \frac{dV_{p}}{d\lambda }$)

  • Group velocity is equal to particle velocity($V_{g}=v$)

  • Product of phase velocity and group velocity is equal to square of speed of light ($V_{p}.V_{g}=c^{2}$)

  • Heisenberg uncertainty principle

  • Generation of wave function for a free particle

  • Physical interpretation of the wave function

  • Derivation of time dependent Schrodinger wave equation

  • Derivation of time independent Schrodinger wave equation

  • Eigen Function, Eigen Values and Eigen Vectors

  • Postulate of wave mechanics or Quantum Mechanics

  • Quantum Mechanical Operators

  • Normalized and Orthogonal wave function

  • Particle in one dimensional box (Infinite Potential Well)

  • Minimum Energy Or Zero Point Energy of a Particle in an one dimensional potential box or Infinite Well

  • Normalization of the wave function of a particle in one dimension box or infinite potential well

  • Orthogonality of the wave functions of a particle in one dimension box or infinite potential well

  • Eigen value of the momentum of a particle in one dimension box or infinite potential well

  • Schrodinger's equation for the complex conjugate waves function

  • Probability Current Density for a free particle in Quantum Mechanics

  • Ehrenfest's Theorem and Derivation

  • Momentum wave function for a free particle

  • Wave function of a particle in free state

  • One dimensional Step Potential Barrier for a Particle

























  • Blog Archive