Gauss's Law for Electric Flux and Derivation

Gauss's Law:

Gauss's law for electric flux is given by Carl Friedrich Gauss in 1813. He extended the work of Joseph-Louis Lagrange. This formula was first formulated in 1713 by Lagrange. Gauss's law stated that:

The electric flux passing normal through any closed hypothetical surface is always equal to the $\frac{1}{\epsilon_{0}}$ times of the total charge enclosed within that closed surface. This closed hypothetical surface is known as Gaussian surface.

Let us consider that a $+q$ coulomb charge is enclosed within the Gaussian's surface. Then according to Gauss's Law, the electric flux will be:

$\phi _{E}= \frac{q}{\epsilon_{0}}$

The electric flux of the electric field →

$\phi_{E}=\oint \overrightarrow{E}\cdot\overrightarrow{dA}$

Substitute this value of electric flux $\phi_{E}$ in the above formula so we get →

$\oint \overrightarrow{E}\cdot\overrightarrow{dA}=\frac{q}{\epsilon_{0}}$

Where $\epsilon_{0}$ → Permittivity of the free space

The above formula of Gauss's law is applicable only under the following two conditions:

1.) The electric field at every point on the surface is either perpendicular or tangential.
2.) The magnitude of the electric field at every point where it is perpendicular to the surface has a constant value.

Derivation of Gauss's law from Coulomb's law:

1.) When the charge is within the surface
2.) When the charge is outside the surface

1. When the charge is within the surface:

Let a charge $+q$ is placed at point $O$ within a closed surface of irregular shape. Consider a point $P$ on the surface which is at a distance $r$ from the point $O$. Now take a small element or area $\overrightarrow{dA}$ around the point $P$. If $\theta$ is the angle between $\overrightarrow{E}$ and $\overrightarrow{dA}$ then electric flux through small element or area $\overrightarrow{dA}$

$d\phi_{E}=\overrightarrow{E}\cdot\overrightarrow{dA}$

$d\phi_{E}=E\:dA\:cos\theta \qquad\quad\quad (1)$
Electric flux when charge is inside the surface
When charge is inside the surface
According to Coulomb's law, the electric field intensity $E$  at point $P$.

$E=\frac{1}{4\pi\epsilon_{0}}\frac{q}{r^{2}}$

Now substitute the value of electric field intensity $E$ in equation $(1)$

$d\phi_{E}=\frac{q}{4\pi\epsilon_{0}}\frac{dA\:cos\theta}{r^{2}}$

but $\frac{dA\:cos\theta}{r^{2}}$ is the solid angle $d\omega$ subtended by $dA$ at point $O$. Hence the above equation can be written as

$d\phi_{E}=\frac{q}{4\pi\epsilon_{0}}d\omega$

So, The total flux $\phi_{E}$ over the entire surface can be found by integrating the above equation

$\oint d\phi_{E}= \frac{q}{4\pi\epsilon_{0}}\oint d\omega$

For entire surface solid angle $d\omega$ will be equal to $4\pi$ i.e. $d\omega=4\pi$

$\phi _{E}= \frac{q}{\epsilon_{0}}$

If the closed surface enclosed with several charges like $q_{1},q_{2},q_{3},.....-q_{1},-q_{2},-q_{3},.....$. Now each charge will contribute to the total electric flux $\phi_{E}$.

$\phi_{E}= \frac{1}{\epsilon_{0}}\left [ q_{1}+q_{2}+q_{3}...-q_{1}-q_{2}-q_{3}... \right ]$

Here $\quad q=q_{i}-q_{j}$

$\phi_{E}= \frac{1}{\epsilon_{0}}\sum_{i=1,j=1}^{n}(q_{i}-q_{j})$

$\phi_{E}= \frac{1}{\epsilon_{0}}\sum q$

Where $\sum q$ → Algebraic Sum of all the charges

2. When the charge is outside the surface:

Let a point charge $+q$ be situated at point $O$ outside the closed surface. Now a cone of solid angle $d\omega$ from point $O$ cuts the surface area $dA_{1}$, $dA_{2}$ at point $P$ and $Q$ respectively. The electric flux for an outward normal is positive while for inward normal is negative so

The electric flux at point $P$ through an area

$d\phi_{1}$= $-\left (\frac{q}{4\pi \epsilon_{0}} \right )d\omega$

The electric flux at point $Q$ through area

$d\phi_{2}$= $+\left (\frac{q}{4\pi \epsilon_{0}} \right )d\omega$
Electric Flux Passing Through Closed Surface When Charge is Outside the Surface
The Total electric flux will be sum of all the electric flux passing through areas of surface →

$\phi_{E}=d\phi_{1}+d\phi_{2}$

$\phi_{E}=-\left ( \frac{q}{4\pi \epsilon_{0}} \right )d\omega+\left ( \frac{q}{4\pi \epsilon_{0}} \right )d\omega $

$\phi_{E}=0$

The above equation is true for all cones from point $O$ through any surface, however irregular it may be-

The total electric flux over the entire surface due to an external charge is zero.

This verifies Gauss's law.

Application of Gauss's law:

There are following some important application given below:

  1. Electric field intensity due to a point charge

  2. Electric field intensity due to uniformly charged spherical Shell (for Thin and Thick)

  3. Electric field intensity due to a uniformly charged solid sphere (Conducting and Non-conducting)

  4. Electric field intensity due to uniformly charged infinite plane sheet (for Thin and Thick)

  5. Electric field intensity due to uniformly charged parallel sheet

  6. Electric field intensity due to charged infinite length wire

Popular Posts

Study-Material













  • Classical world and Quantum world

  • Inadequacy of classical mechanics

  • Drawbacks of Old Quantum Theory

  • Bohr's Quantization Condition

  • Energy distribution spectrum of black body radiation

  • Energy distribution laws of black body radiation

  • The Compton Effect | Experiment Setup | Theory | Theoretical Expression | Limitation | Recoil Electron

  • Davisson and Germer's Experiment and Verification of the de-Broglie Relation

  • Significance of Compton's Effect

  • Assumptions of Planck’s Radiation Law

  • Derivation of Planck's Radiation Law

  • de-Broglie Concept of Matter wave

  • Definition and derivation of the phase velocity and group velocity of wave

  • Relation between group velocity and phase velocity ($V_{g}=V_{p}-\lambda \frac{dV_{p}}{d\lambda }$)

  • Group velocity is equal to particle velocity($V_{g}=v$)

  • Product of phase velocity and group velocity is equal to square of speed of light ($V_{p}.V_{g}=c^{2}$)

  • Heisenberg uncertainty principle

  • Generation of wave function for a free particle

  • Physical interpretation of the wave function

  • Derivation of time dependent Schrodinger wave equation

  • Derivation of time independent Schrodinger wave equation

  • Eigen Function, Eigen Values and Eigen Vectors

  • Postulate of wave mechanics or Quantum Mechanics

  • Quantum Mechanical Operators

  • Normalized and Orthogonal wave function

  • Particle in one dimensional box (Infinite Potential Well)

  • Minimum Energy Or Zero Point Energy of a Particle in an one dimensional potential box or Infinite Well

  • Normalization of the wave function of a particle in one dimension box or infinite potential well

  • Orthogonality of the wave functions of a particle in one dimension box or infinite potential well

  • Eigen value of the momentum of a particle in one dimension box or infinite potential well

  • Schrodinger's equation for the complex conjugate waves function

  • Probability Current Density for a free particle in Quantum Mechanics

  • Ehrenfest's Theorem and Derivation

  • Momentum wave function for a free particle

  • Wave function of a particle in free state

  • One dimensional Step Potential Barrier for a Particle

























  • Blog Archive