Derivation of Maxwell's third equation

Maxwell's third equation is the differential form of Faraday's law induction.i.e

$\overrightarrow{\nabla} \times \overrightarrow{E}=- \frac{\partial{\overrightarrow{B}}}{\partial{t}}$

Derivation:

According to Faraday's Induced law-

$e=-\frac{\partial{\phi_{B}}}{\partial{t}} \qquad(1)$

According to Gauss's law of magnetism-

$\phi_{B}=\oint_{S} \overrightarrow{B}.\overrightarrow{dS} \qquad(2)$

Now substitute the value of $\phi_{B}$ in equation $(1)$

$e=-\frac{\partial}{\partial{t}} \oint_{S} \overrightarrow{B}.\overrightarrow{dS}$

$e=-\oint_{S} \frac{\partial{\overrightarrow{B}}}{\partial{t}}.\overrightarrow{dS} \qquad(3)$

The line integral of the electric field around a closed loop is called electromotive force. Thus

$e=\oint_{l} \overrightarrow{E}.\overrightarrow{dl} \qquad(4)$

from equation $(3)$ and $(4)$

$\oint_{l} \overrightarrow{E}.\overrightarrow{dl}=-\oint_{S} \frac{\partial{\overrightarrow{B}}}{\partial{t}}.\overrightarrow{dS} \qquad(5)$

According to Stroke's Theorem-

$\oint_{l} \overrightarrow{E}.\overrightarrow{dl}=\oint_{S} (\overrightarrow{\nabla} \times \overrightarrow{E}).\overrightarrow{dS} \qquad(6)$

from equation $(5)$ and equation $(6)$

$\oint_{S} (\overrightarrow{\nabla} \times \overrightarrow{E}).\overrightarrow{dS}=-\oint_{S} \frac{\partial{\overrightarrow{B}}}{\partial{t}}.\overrightarrow{dS}$

$\oint_{S} [(\overrightarrow{\nabla} \times \overrightarrow{E})+ \frac{\partial{\overrightarrow{B}}}{\partial{t}}].\overrightarrow{dS}=0$

If the surface is arbitrary then-

$(\overrightarrow{\nabla} \times \overrightarrow{E})+ \frac{\partial{\overrightarrow{B}}}{\partial{t}}=0$

$\overrightarrow{\nabla} \times \overrightarrow{E}=- \frac{\partial{\overrightarrow{B}}}{\partial{t}}$

This is Maxwell's third equation.

Popular Posts

Study-Material













  • Classical world and Quantum world

  • Inadequacy of classical mechanics

  • Drawbacks of Old Quantum Theory

  • Bohr's Quantization Condition

  • Energy distribution spectrum of black body radiation

  • Energy distribution laws of black body radiation

  • The Compton Effect | Experiment Setup | Theory | Theoretical Expression | Limitation | Recoil Electron

  • Davisson and Germer's Experiment and Verification of the de-Broglie Relation

  • Significance of Compton's Effect

  • Assumptions of Planck’s Radiation Law

  • Derivation of Planck's Radiation Law

  • de-Broglie Concept of Matter wave

  • Definition and derivation of the phase velocity and group velocity of wave

  • Relation between group velocity and phase velocity ($V_{g}=V_{p}-\lambda \frac{dV_{p}}{d\lambda }$)

  • Group velocity is equal to particle velocity($V_{g}=v$)

  • Product of phase velocity and group velocity is equal to square of speed of light ($V_{p}.V_{g}=c^{2}$)

  • Heisenberg uncertainty principle

  • Generation of wave function for a free particle

  • Physical interpretation of the wave function

  • Derivation of time dependent Schrodinger wave equation

  • Derivation of time independent Schrodinger wave equation

  • Eigen Function, Eigen Values and Eigen Vectors

  • Postulate of wave mechanics or Quantum Mechanics

  • Quantum Mechanical Operators

  • Normalized and Orthogonal wave function

  • Particle in one dimensional box (Infinite Potential Well)

  • Minimum Energy Or Zero Point Energy of a Particle in an one dimensional potential box or Infinite Well

  • Normalization of the wave function of a particle in one dimension box or infinite potential well

  • Orthogonality of the wave functions of a particle in one dimension box or infinite potential well

  • Eigen value of the momentum of a particle in one dimension box or infinite potential well

  • Schrodinger's equation for the complex conjugate waves function

  • Probability Current Density for a free particle in Quantum Mechanics

  • Ehrenfest's Theorem and Derivation

  • Momentum wave function for a free particle

  • Wave function of a particle in free state

  • One dimensional Step Potential Barrier for a Particle

























  • Blog Archive