Concept of Simultaneity in Special Relativity

Concept of Simultaneity (Relative character of Time ): The interval aren't the same for two observes in relative motion. This cause an important incontrovertible fact that two events that appear to happen simultaneously to at least one observer are not simultaneous to another observer in relative motion.

Suppose two events occur (or two-time bombs explode) at different places $x_{1}$ and $x_{2}$ but at the same time $t_{0}$ with respect to an observer in a stationary frame (or on the ground). The situation of the different to an observer in moving frame $S'$ or to a pilot of a spaceship moving with velocity $v$ relative to stationary frame $S$ (or ground). To him, according to Lorentz transformation for time. The explosion at $x_{1}$ occurs at

$t'_{1} = \frac{t_{0} -x_{1}\frac{v}{c^{2}}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$

$ x_{2}$ occurs at

$t'_{2} = \frac{t_{0}- x_{2}\frac{v}{c^{2}}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$

Hence the two events (explosions) that occur simultaneously to one observer in the stationary frame are separated to another observer in a moving frame by an interval of

$t'_{2}-t'_{1}=\frac{\left ( x_{1}-x_{2} \right )\frac{v}{c^{2}}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$

Therefore, the principle of simultaneity in relativity is an absolute concept for two events. It depends on an observer or a frame of reference. The effect is not due to the time dilation. Hence, we conclude that there is no such thing as “absolute time” which is the same for all observers.

“Time is relative and it varies for all observers in relative motion.”

Popular Posts

Study-Material













  • Classical world and Quantum world

  • Inadequacy of classical mechanics

  • Drawbacks of Old Quantum Theory

  • Bohr's Quantization Condition

  • Energy distribution spectrum of black body radiation

  • Energy distribution laws of black body radiation

  • The Compton Effect | Experiment Setup | Theory | Theoretical Expression | Limitation | Recoil Electron

  • Davisson and Germer's Experiment and Verification of the de-Broglie Relation

  • Significance of Compton's Effect

  • Assumptions of Planck’s Radiation Law

  • Derivation of Planck's Radiation Law

  • de-Broglie Concept of Matter wave

  • Definition and derivation of the phase velocity and group velocity of wave

  • Relation between group velocity and phase velocity ($V_{g}=V_{p}-\lambda \frac{dV_{p}}{d\lambda }$)

  • Group velocity is equal to particle velocity($V_{g}=v$)

  • Product of phase velocity and group velocity is equal to square of speed of light ($V_{p}.V_{g}=c^{2}$)

  • Heisenberg uncertainty principle

  • Generation of wave function for a free particle

  • Physical interpretation of the wave function

  • Derivation of time dependent Schrodinger wave equation

  • Derivation of time independent Schrodinger wave equation

  • Eigen Function, Eigen Values and Eigen Vectors

  • Postulate of wave mechanics or Quantum Mechanics

  • Quantum Mechanical Operators

  • Normalized and Orthogonal wave function

  • Particle in one dimensional box (Infinite Potential Well)

  • Minimum Energy Or Zero Point Energy of a Particle in an one dimensional potential box or Infinite Well

  • Normalization of the wave function of a particle in one dimension box or infinite potential well

  • Orthogonality of the wave functions of a particle in one dimension box or infinite potential well

  • Eigen value of the momentum of a particle in one dimension box or infinite potential well

  • Schrodinger's equation for the complex conjugate waves function

  • Probability Current Density for a free particle in Quantum Mechanics

  • Ehrenfest's Theorem and Derivation

  • Momentum wave function for a free particle

  • Wave function of a particle in free state

  • One dimensional Step Potential Barrier for a Particle

























  • Blog Archive