Relation between angular velocity and linear velocity

Relation between angular velocity $(\omega)$ and linear velocity$(v)$: We know that the angular displacement of the particle is

$\Delta \theta= \frac{\Delta s}{r} \qquad(1)$

Where $r$ = The radius of a circle.

Now divide by $\Delta t$ on both side of equation $(1)$

$\frac{\Delta \theta}{\Delta t}=\frac{1}{r} \frac{\Delta s}{\Delta t}$

If $\Delta t \rightarrow 0$ then the above equation can be written as

$\underset{\Delta t \rightarrow 0}{Lim}\: \frac{\Delta \theta}{\Delta t}=\frac{1}{r}\: \underset{\Delta t \rightarrow 0}{Lim} \: \frac{\Delta s}{\Delta t} \qquad(2)$

Where
$\underset{\Delta t \rightarrow 0}{Lim}\: \frac{\Delta \theta}{\Delta t}$ = Instantaneous Angular Velocity $(\omega)$

$\underset{\Delta t \rightarrow 0}{Lim} \: \frac{\Delta s}{\Delta t}$= Instantaneous Linear Velocity $(v)$

Now equation $(2)$ can be written as

$\omega=\frac{1}{r}v$

$v=r\omega$

This is the relation between linear velocity and angular velocity.