Relation between electric current and drift velocity

Derivation→ Let us consider

  • The length of the conductor = $l$

  • The cross-section area of the conductor = $A$

  • The total number of free electrons inside the conductor = $N$

  • The current flow in the conductor = $i$

  • Flow of electrons in conductor
    The flow of Electron in Conductor
  • The Relaxation time between the two successive collisions =$\tau$
  • According to the law of current density

    $J=\frac{i} {A} $

    $J=\frac{q} {A \tau} \qquad \left( \because i=\frac{q}{\tau} \right)$

    $J=\frac{N \: e }{A \tau} \qquad \left( \because q=Ne \right)$

    Now multiply by length of conductor $l$ in above equation. Therefore we get

    $J=\frac{N \: e \: l}{A \tau\: l} $

    $J=\frac{N \: e \: l}{V \tau\: }\qquad \left(\because V=A.l \right)$

    Where $V$ is volume of the conductor.

    $J=\frac{n \: e \: l}{ \tau }\qquad \left( \because n=\frac{N}{V} \right)$

    Where $n$ is total number of electrons per unit .

    $J=n \: e \: v_{d}\qquad \left( \because v_{d}=\frac{l}{\tau}\right)$

    Where $v_{d}$ are known as drift velocity of charged particles.

    Now substitute the value of current density $J$ from equation $(1)$ to above equation then above equation can be written as

    $i=neAv_{d}$

    Popular Posts

    Study-Material













  • Classical world and Quantum world

  • Inadequacy of classical mechanics

  • Drawbacks of Old Quantum Theory

  • Bohr's Quantization Condition

  • Energy distribution spectrum of black body radiation

  • Energy distribution laws of black body radiation

  • The Compton Effect | Experiment Setup | Theory | Theoretical Expression | Limitation | Recoil Electron

  • Davisson and Germer's Experiment and Verification of the de-Broglie Relation

  • Significance of Compton's Effect

  • Assumptions of Planck’s Radiation Law

  • Derivation of Planck's Radiation Law

  • de-Broglie Concept of Matter wave

  • Definition and derivation of the phase velocity and group velocity of wave

  • Relation between group velocity and phase velocity ($V_{g}=V_{p}-\lambda \frac{dV_{p}}{d\lambda }$)

  • Group velocity is equal to particle velocity($V_{g}=v$)

  • Product of phase velocity and group velocity is equal to square of speed of light ($V_{p}.V_{g}=c^{2}$)

  • Heisenberg uncertainty principle

  • Generation of wave function for a free particle

  • Physical interpretation of the wave function

  • Derivation of time dependent Schrodinger wave equation

  • Derivation of time independent Schrodinger wave equation

  • Eigen Function, Eigen Values and Eigen Vectors

  • Postulate of wave mechanics or Quantum Mechanics

  • Quantum Mechanical Operators

  • Normalized and Orthogonal wave function

  • Particle in one dimensional box (Infinite Potential Well)

  • Minimum Energy Or Zero Point Energy of a Particle in an one dimensional potential box or Infinite Well

  • Normalization of the wave function of a particle in one dimension box or infinite potential well

  • Orthogonality of the wave functions of a particle in one dimension box or infinite potential well

  • Eigen value of the momentum of a particle in one dimension box or infinite potential well

  • Schrodinger's equation for the complex conjugate waves function

  • Probability Current Density for a free particle in Quantum Mechanics

  • Ehrenfest's Theorem and Derivation

  • Momentum wave function for a free particle

  • Wave function of a particle in free state

  • One dimensional Step Potential Barrier for a Particle

























  • Blog Archive