### Relation between electric current and drift velocity

Derivation→ Let us consider

• The length of the conductor = $l$

• The cross-section area of the conductor = $A$

• The total number of free electrons inside the conductor = $N$

• The current flow in the conductor = $i$

•  The flow of Electron in Conductor
• The Relaxation time between the two successive collisions =$\tau$
• According to the law of current density

$J=\frac{i} {A}$

$J=\frac{q} {A \tau} \qquad \left( \because i=\frac{q}{\tau} \right)$

$J=\frac{N \: e }{A \tau} \qquad \left( \because q=Ne \right)$

Now multiply by length of conductor $l$ in above equation. Therefore we get

$J=\frac{N \: e \: l}{A \tau\: l}$

$J=\frac{N \: e \: l}{V \tau\: }\qquad \left(\because V=A.l \right)$

Where $V$ is volume of the conductor.

$J=\frac{n \: e \: l}{ \tau }\qquad \left( \because n=\frac{N}{V} \right)$

Where $n$ is total number of electrons per unit .

$J=n \: e \: v_{d}\qquad \left( \because v_{d}=\frac{l}{\tau}\right)$

Where $v_{d}$ are known as drift velocity of charged particles.

Now substitute the value of current density $J$ from equation $(1)$ to above equation then above equation can be written as

$i=neAv_{d}$

### Numerical Aperture and Acceptance Angle of the Optical Fibre

Angle of Acceptance → If incident angle of light on the core for which the incident angle on the core-cladding interface equals the critical angle then incident angle of light on the core is called the "Angle of Acceptance. Transmission of light when the incident angle is equal to the acceptance angle If the incident angle is greater than the acceptance angle i.e. $\theta_{i}>\theta_{0}$ then the angle of incidence on the core-cladding interface will be less than the critical angle due to which part of the incident light is transmitted into cladding as shown in the figure below Transmission of light when the incident angle is greater than the acceptance angle If the incident angle is less than the acceptance angle i.e. $\theta_{i}<\theta_{0}$ then the angle of incidence on the core-cladding interface will be greater than the critical angle for which total internal reflection takes place inside the core. As shown in the figure below Transmission of lig

### Fraunhofer diffraction due to a single slit

Let $S$ be a point monochromatic source of light of wavelength $\lambda$ placed at the focus of collimating lens $L_{1}$. The light beam is incident normally from $S$ on a narrow slit $AB$ of width $e$ and is diffracted from it. The diffracted beam is focused at the screen $XY$ by another converging lens $L_{2}$. The diffraction pattern having a central bright band followed by an alternative dark and bright band of decreasing intensity on both sides is obtained. Analytical Explanation: The light from the source $S$ is incident as a plane wavefront on the slit $AB$. According to Huygens's wave theory, every point in $AB$ sends out secondary waves in all directions. The undeviated ray from $AB$ is focused at $C$ on the screen by the lens $L_{2}$ while the rays diffracted through an angle $\theta$ are focussed at point $p$ on the screen. The rays from the ends $A$ and $B$ reach $C$ in the same phase and hence the intensity is maximum. Fraunhofer diffraction due to

### Electromagnetic wave equation in free space

Maxwell's Equations: Maxwell's equation of the electromagnetic wave is a collection of four equations i.e. Gauss's law of electrostatic, Gauss's law of magnetism, Faraday's law of electromotive force, and Ampere's Circuital law. Maxwell converted the integral form of these equations into the differential form of the equations. The differential form of these equations is known as Maxwell's equations. $\overrightarrow{\nabla}. \overrightarrow{E}= \frac{\rho}{\epsilon_{0}}$ $\overrightarrow{\nabla}. \overrightarrow{B}=0$ $\overrightarrow{\nabla} \times \overrightarrow{E}=-\frac{\partial \overrightarrow{B}}{\partial t}$ $\overrightarrow{\nabla} \times \overrightarrow{B}= \mu \overrightarrow{J}$ Modified Form: $\overrightarrow{\nabla} \times \overrightarrow{B}= \mu \left(\overrightarrow{J}+ \epsilon \frac{ \partial \overrightarrow{E}}{\partial t} \right)$ For free space