Skip to main content

Poynting Vector and Poynting Theorem

Poynting Vector:
The rate of flow of energy per unit area in plane electromagnetic wave is known as Poynting vector. It is represented by $\overrightarrow{S}$. It is a vector quantity.
$\overrightarrow{S}=\overrightarrow{E} \times \overrightarrow{H}$

$\overrightarrow{S}=\frac{1} {\mu_{0}} (\overrightarrow{E} \times \overrightarrow{B})$

Poynting Theorem (Work energy theorem):

The most important aspect of electrodynamics is:
  • Energy density stored with an electromagnetic wave
  • Energy Flux associated with an electromagnetic wave
To derive the energy density and energy flux. We consider the conservation of energy in small volume elements in space. The work done per unit volume by an electromagnetic wave:

$W=\overrightarrow{J}.\overrightarrow{E} \qquad(1)$

This work done also consider as energy dissipation per unit volume. This energy dissipation must be connected with the net decrease in energy density and energy flow out of the volume. According to Modified Maxwell's Forth equation:

$\overrightarrow{\nabla} \times \overrightarrow{H} = \overrightarrow{J} + \frac{\partial \overrightarrow{D} }{\partial t}$

$\overrightarrow{J} = \overrightarrow{\nabla} \times \overrightarrow{H} - \frac{\partial \overrightarrow{D} }{\partial t} \qquad (2)$

Now subtitute the value of $\overrightarrow{J}$ in equation $(1)$. Therefore we get

$W=\overrightarrow{E}.\left( \overrightarrow{\nabla} \times \overrightarrow{H} - \frac{\partial \overrightarrow{D} }{\partial t}\right) \qquad(3) $

Now we employ the vector identity

$\overrightarrow{\nabla}. (\overrightarrow{E} \times \overrightarrow{H})= \overrightarrow{H} (\overrightarrow{\nabla} \times \overrightarrow{E})-\overrightarrow{E}.(\overrightarrow{\nabla} \times \overrightarrow{H})$

$\overrightarrow{E}.(\overrightarrow{\nabla} \times \overrightarrow{H}) = \overrightarrow{H} (\overrightarrow{\nabla} \times \overrightarrow{E})-\overrightarrow{\nabla}. (\overrightarrow{E} \times \overrightarrow{H})\qquad (4)$

From equation $(3)$ and equation $(4)$

$ W= \overrightarrow{H} (\overrightarrow{\nabla} \times \overrightarrow{E})-\overrightarrow{\nabla}.(\overrightarrow{E} \times \overrightarrow{H}) - \overrightarrow{E} \left( \frac{\partial \overrightarrow{D} }{\partial t}\right) $

$ W= \overrightarrow{H} \left( \frac{-\partial \overrightarrow{B} }{\partial t}\right)-\overrightarrow{\nabla}.(\overrightarrow{E} \times \overrightarrow{H}) - \overrightarrow{E} \left( \frac{\partial \overrightarrow{D} }{\partial t}\right) $

$ W= -\overrightarrow{\nabla}.(\overrightarrow{E} \times \overrightarrow{H}) -\overrightarrow{H} \left( \frac{-\partial \overrightarrow{B} }{\partial t}\right) - \overrightarrow{E} \left( \frac{\partial \overrightarrow{D} }{\partial t}\right) $

$ W= -\overrightarrow{\nabla}.(\overrightarrow{E} \times \overrightarrow{H}) -\frac{1}{2}\left [2 \overrightarrow{H} \left( \frac{-\partial \overrightarrow{B} }{\partial t}\right) + 2 \overrightarrow{E} \left( \frac{\partial \overrightarrow{D} }{\partial t}\right) \right] $

$ W= -\overrightarrow{\nabla}.(\overrightarrow{E} \times \overrightarrow{H}) -\frac{1}{2}\left [ \overrightarrow{H} \left( \frac{\partial \overrightarrow{B} }{\partial t}\right)+\overrightarrow{H} \left( \frac{\partial \overrightarrow{B} }{\partial t}\right) + \overrightarrow{E} \left( \frac{\partial \overrightarrow{D} }{\partial t}\right)+ \overrightarrow{E} \left( \frac{\partial \overrightarrow{D} }{\partial t}\right) \right] $

Put $B=\mu H$ and $D=\epsilon E$ in the above equation

$ W= -\overrightarrow{\nabla}.(\overrightarrow{E} \times \overrightarrow{H}) -\frac{1}{2}\left [ \overrightarrow{H} \left( \frac{\partial \overrightarrow{B} }{\partial t}\right)+\frac{\overrightarrow{B}}{\mu} \left( \frac{\partial \left(\mu \overrightarrow{H}\right) }{\partial t}\right) + \overrightarrow{E} \left( \frac{\partial \overrightarrow{D} }{\partial t}\right)+ \frac{\overrightarrow{D}}{\epsilon} \left( \frac{\partial \left( \epsilon \overrightarrow{E}\right) }{\partial t}\right) \right] $

$ W= -\overrightarrow{\nabla}.(\overrightarrow{E} \times \overrightarrow{H}) -\frac{1}{2}\left [ \overrightarrow{H} \left( \frac{\partial \overrightarrow{B} }{\partial t}\right)+\overrightarrow{B} \left( \frac{\partial \overrightarrow{H} }{\partial t}\right) + \overrightarrow{E} \left( \frac{\partial \overrightarrow{D} }{\partial t}\right)+ \overrightarrow{D} \left( \frac{\partial \overrightarrow{E} }{\partial t}\right) \right] $

$ W= -\overrightarrow{\nabla}.(\overrightarrow{E} \times \overrightarrow{H}) -\frac{1}{2}\left [ \frac{ \partial \left(\overrightarrow{B}.\overrightarrow{H}\right) }{\partial t} + \frac{ \partial \left( \overrightarrow{E}.\overrightarrow{D}\right) }{\partial t} \right] $

$ W= -\overrightarrow{\nabla}.(\overrightarrow{E} \times \overrightarrow{H}) - \frac{1}{2} \frac{\partial}{\partial t} \left( \overrightarrow{H}.\overrightarrow{B}+\overrightarrow{E}.\overrightarrow{D} \right) $

$ JE= -\overrightarrow{\nabla}.(\overrightarrow{E} \times \overrightarrow{H}) - \frac{\partial}{\partial t} \left( \frac{\overrightarrow{H}.\overrightarrow{B}+\overrightarrow{E}.\overrightarrow{D} }{2} \right) \qquad \left( \because W= \overrightarrow{J}.\overrightarrow{E} \right) $

$ -JE= \overrightarrow{\nabla}.\overrightarrow{S} + \frac{\partial}{\partial t} \left( \frac{\overrightarrow{H}.\overrightarrow{B}+\overrightarrow{E}.\overrightarrow{D} }{2} \right) \qquad (\because \overrightarrow{S}= \overrightarrow{E} \times \overrightarrow{H})$

$ -JE= \overrightarrow{\nabla}.\overrightarrow{S} + \frac{\partial U}{\partial t} \qquad \left( \because U = \frac{\overrightarrow{H}.\overrightarrow{B}+\overrightarrow{E}.\overrightarrow{D} }{2} \right) $

$ \overrightarrow{\nabla}.\overrightarrow{S} + \frac{\partial U}{\partial t} =-JE $

This equation represents the conservation of energy principle. It is also known as Poynting theorem. Here Negative signs of work done to represent that electromagnetic flow with energy flux as continuity energy density. So this equation is also known as the continuity equation.

Where

$ \overrightarrow{\nabla}.\overrightarrow{S}$ $\rightarrow$ The flow of energy

$U$ $\rightarrow$ Energy density of electromagnetic filed

$S$ $\rightarrow$ Energy flux or Poyting vector

If Current density $\overrightarrow{J}=0$ Then

$ \overrightarrow{\nabla}.\overrightarrow{S} + \frac{\partial U}{\partial t} = 0 $

$ \overrightarrow{\nabla}.\overrightarrow{S} = \frac{\partial U}{\partial t} $

$ \overrightarrow{\nabla}.\overrightarrow{S} = \frac{\partial }{\partial t} (Storage \: energy) $

Comments

Popular Posts

Numerical Aperture and Acceptance Angle of the Optical Fibre

Angle of Acceptance → If incident angle of light on the core for which the incident angle on the core-cladding interface equals the critical angle then incident angle of light on the core is called the "Angle of Acceptance. Transmission of light when the incident angle is equal to the acceptance angle If the incident angle is greater than the acceptance angle i.e. $\theta_{i}>\theta_{0}$ then the angle of incidence on the core-cladding interface will be less than the critical angle due to which part of the incident light is transmitted into cladding as shown in the figure below Transmission of light when the incident angle is greater than the acceptance angle If the incident angle is less than the acceptance angle i.e. $\theta_{i}<\theta_{0}$ then the angle of incidence on the core-cladding interface will be greater than the critical angle for which total internal reflection takes place inside the core. As shown in the figure below Transmission of lig

Fraunhofer diffraction due to a single slit

Let $S$ be a point monochromatic source of light of wavelength $\lambda$ placed at the focus of collimating lens $L_{1}$. The light beam is incident normally from $S$ on a narrow slit $AB$ of width $e$ and is diffracted from it. The diffracted beam is focused at the screen $XY$ by another converging lens $L_{2}$. The diffraction pattern having a central bright band followed by an alternative dark and bright band of decreasing intensity on both sides is obtained. Analytical Explanation: The light from the source $S$ is incident as a plane wavefront on the slit $AB$. According to Huygens's wave theory, every point in $AB$ sends out secondary waves in all directions. The undeviated ray from $AB$ is focused at $C$ on the screen by the lens $L_{2}$ while the rays diffracted through an angle $\theta$ are focussed at point $p$ on the screen. The rays from the ends $A$ and $B$ reach $C$ in the same phase and hence the intensity is maximum. Fraunhofer diffraction due to

Particle in one dimensional box (Infinite Potential Well)

Let us consider a particle of mass $m$ that is confined to one-dimensional region $0 \leq x \leq L$ or the particle is restricted to move along the $x$-axis between $x=0$ and $x=L$. Let the particle can move freely in either direction, between $x=0$ and $x=L$. The endpoints of the region behave as ideally reflecting barriers so that the particle can not leave the region. A potential energy function $V(x)$ for this situation is shown in the figure below. Particle in One-Dimensional Box(Infinite Potential Well) The potential energy inside the one -dimensional box can be represented as $\begin{Bmatrix} V(x)=0 &for \: 0\leq x \leq L \\ V(x)=\infty & for \: 0> x > L \\ \end{Bmatrix}$ $\frac{d^{2} \psi(x)}{d x^{2}}+\frac{2m}{\hbar^{2}}(E-V)\psi(x)=0 \qquad(1)$ If the particle is free in a one-dimensional box, Schrodinger's wave equation can be written as: $\frac{d^{2} \psi(x)}{d x^{2}}+\frac{2mE}{\hbar^{2}}\psi(x)=0$ $\frac{d^{2} \psi(x)}{d x