Derivation of Gravitational Potential Energy due to Point mass and on the Earth

Definition of Gravitational Potential Energy:
When an object is brought from infinity to a point in the gravitational field then work done acquired by the gravitational force is stored in the form of potential energy which is called gravitational potential energy.

Let us consider, An object of mass $m$ brought from infinity to a point in the gravitational field. If work done acquired by force is $W$ then gravitational potential energy

$U=W_{\infty \rightarrow r}$

Derivation of Gravitational Potential energy due to a Point mass:
Gravitational Potential Energy due to a point mass

Let us consider,
The mass of the point object (i.e point mass)=$m$
The mass of the object that produces the gravitational field = $M$

If the point mass $m$ is at a distance $x$ then the gravitational force between the objects is

$F=G \frac{M \: m}{x^{2}} \qquad(1)$

If the point mass moves a very small distance element $dx$ that is at distance $x$ from point $O$ then the work done to move the point object from point $B$ to $A$

$dw=F.dx$

Now substitute the value of $F$ from equation $(1)$ in above equation

$dw=G \frac{M \: m}{x^{2}}.dx$

Therefore, the work done to bring the point mass from infinity to point $P$ that is at distance $r$ from point $O$ then work done to move the point object from infinity ($\infty$) to point $P$

$\int_{0}^{W} dw = \int_{\infty}^{r} G \frac{M \: m}{x^{2}}.dx $

$ [w]_{0}^{W} = G\: M\: m \int_{\infty}^{r} \frac{1}{x^{2}}.dx $

$ [W-0] = G\: M\: m [-\frac{1}{x} ]_{\infty}^{r} $

$ W = G\: M\: m [\left(-\frac{1}{r}\right) - \left(-\frac{1}{\infty}\right)]$

$ W = -\frac{G\: M\: m }{r} \qquad \left( \because \frac{1}{\infty} =0 \right)$

$ W = -\frac{G\: M\: m }{r} $

This work done by the force is stored in the form of potential energy i.e

$U=W$

$U=-\frac{G\: M\: m }{r}$

Thus the above equation represents the gravitational potential energy of an object at point $P$

Gravitational Potential Energy on Earth:
Gravitational Potential Energy On Earth

Let us consider, The mass of Earth = $M_{e}$
The radius of earth = $R_{e}$
The mass of the object = $m$
The distance from centre $O$ of the earth to point $P$ = $r$
The distance from the surface of the earth to point $P$ = $h$

If the object is at a distance $x$ then the gravitational force is

$F=G \frac{M_{e} \: m}{x^{2}} \qquad(1)$

If the object moves a very small distance element $dx$ that is at distance $x$ from centre point $O$ of the earth then the work done to move an object from point $B$ to $A$

$dw=F.dx$

Now substitute the value of $F$ from equation $(1)$ in above equation

$dw=G \frac{M_{e} \: m}{x^{2}}.dx$

Therefore, the work done to bring the object from infinity to point $P$ that is at distance $r$ from centre point $O$ of the earth then the work done to move an object from infinity ($\infty$) to point $P$

$\int_{0}^{W} dw = \int_{\infty}^{r} G \frac{M_{e} \: m}{x^{2}}.dx $

$ [w]_{0}^{W} = G\: M_{e}\: m \int_{\infty}^{r} \frac{1}{x^{2}}.dx $

$ [W-0] = G\: M_{e}\: m [-\frac{1}{x} ]_{\infty}^{r} $

$ W = G\: M_{e}\: m [\left(-\frac{1}{r}\right) - \left(-\frac{1}{\infty}\right)]$

$ W = -\frac{G\: M_{e}\: m }{r} \qquad \left( \because \frac{1}{\infty} =0 \right)$

$ W = -\frac{G\: M_{e}\: m }{r} $

The above equaton shows that the work done by force is stored in the form of gravitational potential energy i.e.

$U=W$

$ U = -\frac{G\: M_{e}\: m }{r}$

Where $r=R_{e}+h$, then above equation can be written as

$U = -\frac{G\: M_{e}\: m }{R_{e}+h} \qquad(2)$

This is the equation of the gravitational potential energy at point $P$. The other form of the above equation i.e

$U = -\frac{g R_{e}^{2} \: m }{R_{e}+h} \qquad \left( \because GM_{e}= g R_{e}^{2} \right)$

If the object is placed on the surface of the earth then $h=0$. So gravitational potential energy on the surface of the earth
$U=-\frac{G \: M_{e} \: m}{R_{e}}$

This is the equation of the gravitational potential energy of an object placed on the surface of the earth.

$U=-\frac{g R_{e}^{2} m}{R_{e}} \qquad \left( \because GM_{e}= g R_{e}^{2} \right)$

$U=-g R_{e} m$ This is another form of the gravitational potential energy of an object placed on the surface of the earth.

Note:

We know that the gravitational potential energy at any point from above the surface of the earth

$U = -\frac{G\: M_{e}\: m }{R_{e}+h} $

$U = V m \qquad \left( \because V= -\frac{G\: M_{e}\: }{R_{e}+h} \right)$

$U = Gravitational \: Potential \times \: mass \: of \: an \: object$

Popular Posts

Study-Material













  • Classical world and Quantum world

  • Inadequacy of classical mechanics

  • Drawbacks of Old Quantum Theory

  • Bohr's Quantization Condition

  • Energy distribution spectrum of black body radiation

  • Energy distribution laws of black body radiation

  • The Compton Effect | Experiment Setup | Theory | Theoretical Expression | Limitation | Recoil Electron

  • Davisson and Germer's Experiment and Verification of the de-Broglie Relation

  • Significance of Compton's Effect

  • Assumptions of Planck’s Radiation Law

  • Derivation of Planck's Radiation Law

  • de-Broglie Concept of Matter wave

  • Definition and derivation of the phase velocity and group velocity of wave

  • Relation between group velocity and phase velocity ($V_{g}=V_{p}-\lambda \frac{dV_{p}}{d\lambda }$)

  • Group velocity is equal to particle velocity($V_{g}=v$)

  • Product of phase velocity and group velocity is equal to square of speed of light ($V_{p}.V_{g}=c^{2}$)

  • Heisenberg uncertainty principle

  • Generation of wave function for a free particle

  • Physical interpretation of the wave function

  • Derivation of time dependent Schrodinger wave equation

  • Derivation of time independent Schrodinger wave equation

  • Eigen Function, Eigen Values and Eigen Vectors

  • Postulate of wave mechanics or Quantum Mechanics

  • Quantum Mechanical Operators

  • Normalized and Orthogonal wave function

  • Particle in one dimensional box (Infinite Potential Well)

  • Minimum Energy Or Zero Point Energy of a Particle in an one dimensional potential box or Infinite Well

  • Normalization of the wave function of a particle in one dimension box or infinite potential well

  • Orthogonality of the wave functions of a particle in one dimension box or infinite potential well

  • Eigen value of the momentum of a particle in one dimension box or infinite potential well

  • Schrodinger's equation for the complex conjugate waves function

  • Probability Current Density for a free particle in Quantum Mechanics

  • Ehrenfest's Theorem and Derivation

  • Momentum wave function for a free particle

  • Wave function of a particle in free state

  • One dimensional Step Potential Barrier for a Particle

























  • Blog Archive