Expression for Orbital velocity of Satellite and Time Period

Orbital Velocity of Satellite:

When any satellite moves about the planet in a particular orbit then the velocity of the satellite is called the orbital velocity of the satellite.

Expression for Orbital Velocity of Satellite:
Orbital Velocity of Satellite

Let us consider:

The mass of the satellite = $m$

The mass of planet= $M$

The radius of Planet =$R$

The satellite is moving about the planet at height=$h$

The satellite is moving about the planet with orbital velocity=$v_{\circ}$

The distance from the center of the planet to satellite=$r$

The force of gravitation between the planet and the satellite

$F=G \frac{M \: m}{r^{2}} \qquad(1)$

This force work act as a centripetal force to revolve the satellite around the planet i.e.

$F=\frac{m v_{\circ}^{2}}{r} \qquad(2)$

From the above equation $(1)$ and equation $(2)$, we get

$\frac{m v_{\circ}^{2}}{r} = G \frac{M \: m}{r^{2}}$

$v_{\circ}= \sqrt{\frac{G \: M }{r}}$

Where $r=R+h$ then

$v_{\circ}= \sqrt{\frac{G \: M }{R+h}} \qquad(3)$

This is the equation of the orbital velocity of the satellite.

If any satellite revolves around the earth then the orbital velocity
Orbital Velocity of Satellite moving around the Earth

$v_{\circ}= \sqrt{\frac{G \: M_{e} }{R_{e}+h}}$

$v_{\circ}= \sqrt{\frac{gR_{e}^{2}}{R_{e}+h}} \qquad \left( \because G \: M_{e} = gR_{e}^{2} \right)$

$v_{\circ}= R_{e} \sqrt{\frac{g}{R_{e}+h}} $

This is the equation of the orbital velocity of a satellite revolving around the earth.

If the satellite is orbiting very close to the surface of the earth ( i.e $h=0$) then the orbital velocity

$v_{\circ}= R_{e} \sqrt{\frac{g}{R_{e}+0}} $

$v_{\circ}= \sqrt{g R_{e}} $

Now subtitute the value of radius of earth (i.e $R_{e}=6.4 \times 10^{6} \: m$) and gravitational accelertaion ($g=9.8 \:m/sec^{2}$) then orbital velocity

$v_{\circ}=7.92 \: Km/sec$

The time period of Revolving Satellite:

The time taken by satellite to complete on revolution around the planet is called the time period of the satellite.

Let us consider the time period of the revolving satellite is $T$ Then

$T= \frac{Distance \: covered \: by \: Satellite \: in \: one \: revolution}{Orbital \: Velocity}$

$T= \frac{2 \pi r}{v_{\circ}}$

$T= \frac{2 \pi \left( R+h \right)}{v_{\circ}}$

$T= \frac{2 \pi \left( R+h \right)}{v_{\circ}}$

Now subtitute the value of orbital velocity $v_{\circ}$ from equation $(3)$ in above equation then

$T= \frac{2 \pi \left( R+h \right)}{\sqrt{\frac{G \: M }{R+h}}}$

$T= 2 \pi \sqrt{ \frac{ \left( R+h \right)^{3}}{G M}}$

This is the equation of the time period of the revolution of satellites.

If a satellite revolves around the earth then the time period

$T= 2 \pi \sqrt{ \frac{ \left( R_{e}+h \right)^{3}}{G M_{e}}}$

$T= 2 \pi \sqrt{ \frac{ \left( R_{e}+h \right)^{3}}{g R_{e}^{2}}} \qquad \left( \because G \: M_{e} = gR_{e}^{2} \right)$

This is the equation of the time period of revolution of satellite revolving around the earth.

If the satellite revolves very nearly around the earth (i.e $h=0$) then the time period of the satellite from the above equation

$T= 2 \pi \sqrt{ \frac{ \left( R_{e}+0 \right)^{3}}{g R_{e}^{2}}} $

$T= 2 \pi \sqrt{ \frac{ R_{e}}{g}} $

$T= 84.6 \: min $

Popular Posts

Study-Material













  • Classical world and Quantum world

  • Inadequacy of classical mechanics

  • Drawbacks of Old Quantum Theory

  • Bohr's Quantization Condition

  • Energy distribution spectrum of black body radiation

  • Energy distribution laws of black body radiation

  • The Compton Effect | Experiment Setup | Theory | Theoretical Expression | Limitation | Recoil Electron

  • Davisson and Germer's Experiment and Verification of the de-Broglie Relation

  • Significance of Compton's Effect

  • Assumptions of Planck’s Radiation Law

  • Derivation of Planck's Radiation Law

  • de-Broglie Concept of Matter wave

  • Definition and derivation of the phase velocity and group velocity of wave

  • Relation between group velocity and phase velocity ($V_{g}=V_{p}-\lambda \frac{dV_{p}}{d\lambda }$)

  • Group velocity is equal to particle velocity($V_{g}=v$)

  • Product of phase velocity and group velocity is equal to square of speed of light ($V_{p}.V_{g}=c^{2}$)

  • Heisenberg uncertainty principle

  • Generation of wave function for a free particle

  • Physical interpretation of the wave function

  • Derivation of time dependent Schrodinger wave equation

  • Derivation of time independent Schrodinger wave equation

  • Eigen Function, Eigen Values and Eigen Vectors

  • Postulate of wave mechanics or Quantum Mechanics

  • Quantum Mechanical Operators

  • Normalized and Orthogonal wave function

  • Particle in one dimensional box (Infinite Potential Well)

  • Minimum Energy Or Zero Point Energy of a Particle in an one dimensional potential box or Infinite Well

  • Normalization of the wave function of a particle in one dimension box or infinite potential well

  • Orthogonality of the wave functions of a particle in one dimension box or infinite potential well

  • Eigen value of the momentum of a particle in one dimension box or infinite potential well

  • Schrodinger's equation for the complex conjugate waves function

  • Probability Current Density for a free particle in Quantum Mechanics

  • Ehrenfest's Theorem and Derivation

  • Momentum wave function for a free particle

  • Wave function of a particle in free state

  • One dimensional Step Potential Barrier for a Particle

























  • Blog Archive