## Quantum Mechanical Operators

Operator →

An operator is defined as a mathematical term that is used in the operation of a function so that this function may or may not be transformed into another function.

Operators of Quantum Mechanics →

There are the following quantum mechanical operators which are used in the wave function of particles:-

• Momentum Operator

• Kinetic Energy Operator

• Total Energy Operator (Hamiltonian Operator)

• Total Energy Operator in terms of the differential with respect to time

• Momentum Operator →

The wave function for a free particle moving along the position $x$-direction is

$\psi(x,t)=A e^{\frac{i}{\hbar}(P_{x}x-Et)}$

Differentiate the above equation with respect to $x$ then we get

$\frac{\partial \psi}{\partial x}= A e^{\frac{i}{\hbar}(P_{x}x-Et)} \frac{i}{\hbar} P_{x}$

$\frac{\partial \psi}{\partial x}= \psi \frac{i}{\hbar} P_{x}$

$P_{x} \psi = \frac{\hbar}{i}\frac{\partial \psi}{\partial x}$

$P_{x} = \frac{\hbar}{i}\frac{\partial}{\partial x}$

For three dimensional:-

$\overrightarrow{P}= \frac{\hbar}{i} \overrightarrow{\nabla}$

Kinetic Energy Operator →

We know that the momentum operator

$P_{x} \psi = \frac{\hbar}{i}\frac{\partial \psi}{\partial x} \qquad(1)$

Differentiate the above equation $(1)$ with respect to $x$ then we get

$P_{x} \frac{\partial \psi}{\partial x} = \frac{\hbar}{i}\frac{\partial^{2} \psi}{\partial x^{2}} \qquad(2)$

Now substitute the value of $\frac{\partial \psi}{\partial x}$ from equation $(1)$ to equation $(2)$

$\frac{\hbar}{i}\frac{\partial^{2} \psi}{\partial x^{2}} = P_{x} \frac{i}{\hbar} P_{x} \psi$

$\frac{\hbar^{2}}{i^{2}}\frac{\partial^{2} \psi}{\partial x^{2}} = P_{x}^{2} \psi$

$-\hbar^{2}\frac{\partial^{2} \psi}{\partial x^{2}} = P_{x}^{2} \psi \qquad (\because i^{2}=-1)$

$-\frac{\hbar^{2}}{2m}\frac{\partial^{2} \psi}{\partial x^{2}} = \frac{P_{x}^{2}}{2m} \psi \qquad {3}$

$-\frac{\hbar^{2}}{2m}\frac{\partial^{2} \psi}{\partial x^{2}} = K \psi \qquad (\because \frac{P_{x}^{2}}{2m} = K)$

$K \psi = -\frac{\hbar^{2}}{2m}\frac{\partial^{2} \psi}{\partial x^{2}}$

$K = -\frac{\hbar^{2}}{2m}\frac{\partial^{2} }{\partial x^{2}}$

For three dimensions:-

$K = -\frac{\hbar^{2}}{2m}\nabla^{2}$

Total Energy Operator (Hamiltonian Operator) →

The total energy of the particle moving along $x4-aix is given by$E=\frac{P_{x}^{2}}{2m} + V(x) \qquad(1)$Where V(x) → Potential Energy We know that the kinetic energy operator$ K = -\frac{\hbar^{2}}{2m}\frac{\partial^{2} }{\partial x^{2}}  \frac{P_{x}^{2}}{2m} = -\frac{\hbar^{2}}{2m}\frac{\partial^{2} }{\partial x^{2}} \qquad (\because K=\frac{P_{x}^{2}}{2m})$Now substitute the value of$ \frac{P_{x}^{2}}{2m}$in equation$(1)E= -\frac{\hbar^{2}}{2m}\frac{\partial^{2} }{\partial x^{2}} + V(x)$Multiply$\psi$on the both side of above equation$E \psi= -\frac{\hbar^{2}}{2m}\frac{\partial^{2} \psi }{\partial x^{2}} + V(x) \psiE \psi= \left [ -\frac{\hbar^{2}}{2m}\frac{\partial^{2} }{\partial x^{2}} + V(x) \right ] \psiE \psi= \hat{H} \psi$So the total energy operator$ \hat{H} = \left [ -\frac{\hbar^{2}}{2m}\frac{\partial^{2} }{\partial x^{2}} + V(x) \right ] $For three dimensions:-$\hat{H} = \left [ -\frac{\hbar^{2}}{2m}\nabla^{2} + V(x) \right ] $The total energy operator is denoted by$\hat{H}$and called the Hamiltonian Operator. Total Energy Operator in terms of the differential with respect to time → We know that the wave function$\psi= A e^{\frac{i}{\hbar}}\left( P_{x}x - Et \right)$Differentiate the above equation$(1)$with respect to$t$then we get$\frac{\partial \psi}{\partial t}= A e^{\frac{i}{\hbar}(P_{x} x -Et)} \frac{i}{\hbar} (-E) \frac{\partial \psi}{\partial t}= - \frac{i}{\hbar} E \psi E \psi= -\frac{\hbar}{i} \frac{\partial \psi}{\partial t}E \psi= i^{2} \frac{\hbar}{i} \frac{\partial \psi}{\partial t} \qquad (\because i^{2}=-1)E \psi= i \hbar \frac{\partial \psi}{\partial t}$This energy operator is denoted by$E$so$E = i \hbar \frac{\partial }{\partial t}\$