Derivation of Maxwell's first equation

Maxwell's first equation is the differential form of Gauss's law of electrostatics.i.e

$\overrightarrow{\nabla}.\overrightarrow{E}= \frac{\rho}{\epsilon_{0}} $

Derivation:

According to Gauss's law for electrostatic-

$\oint_{s} \overrightarrow{E}.\overrightarrow{dS}=\frac{q}{\epsilon_{0}} \qquad(1)$

For continuous charge distribution inside the surface-

$q=\oint_{v}\rho.dV$

Where
$\rho$→Charge density
dV→Small volume

Now substitute the value of $q$ in equation $(1)$ then

$\oint_{s}\overrightarrow{E}.\overrightarrow{dS}=\frac{1}{\epsilon_{0}} \oint_{v}\rho.dV \qquad(2)$

Now according to Gauss's divergence theorem-

$\oint_{s} \overrightarrow{E}.\overrightarrow{dS}= \oint_{v} \overrightarrow{\nabla}.\overrightarrow{E} dV \qquad (3)$

From equation$(2)$ and equation$(3)$, we can write the above equation-

$\oint_{v} \overrightarrow{\nabla}.\overrightarrow{E} dV= \frac{1}{\epsilon_{0}} \oint_{v}\rho.dV $

$\oint_{v} \overrightarrow{\nabla}.\overrightarrow{E} dV- \frac{1}{\epsilon_{0}} \oint_{v}\rho.dV=0 $

$\oint_{v} (\overrightarrow{\nabla}.\overrightarrow{E}- \frac{\rho}{\epsilon_{0}})dV=0 $

On solving the above equation-

$\overrightarrow{\nabla}.\overrightarrow{E}- \frac{\rho}{\epsilon_{0}}=0 $

$\overrightarrow{\nabla}.\overrightarrow{E}= \frac{\rho}{\epsilon_{0}} $

This is Maxwell's first equation.

Popular Posts

Study-Material













  • Classical world and Quantum world

  • Inadequacy of classical mechanics

  • Drawbacks of Old Quantum Theory

  • Bohr's Quantization Condition

  • Energy distribution spectrum of black body radiation

  • Energy distribution laws of black body radiation

  • The Compton Effect | Experiment Setup | Theory | Theoretical Expression | Limitation | Recoil Electron

  • Davisson and Germer's Experiment and Verification of the de-Broglie Relation

  • Significance of Compton's Effect

  • Assumptions of Planck’s Radiation Law

  • Derivation of Planck's Radiation Law

  • de-Broglie Concept of Matter wave

  • Definition and derivation of the phase velocity and group velocity of wave

  • Relation between group velocity and phase velocity ($V_{g}=V_{p}-\lambda \frac{dV_{p}}{d\lambda }$)

  • Group velocity is equal to particle velocity($V_{g}=v$)

  • Product of phase velocity and group velocity is equal to square of speed of light ($V_{p}.V_{g}=c^{2}$)

  • Heisenberg uncertainty principle

  • Generation of wave function for a free particle

  • Physical interpretation of the wave function

  • Derivation of time dependent Schrodinger wave equation

  • Derivation of time independent Schrodinger wave equation

  • Eigen Function, Eigen Values and Eigen Vectors

  • Postulate of wave mechanics or Quantum Mechanics

  • Quantum Mechanical Operators

  • Normalized and Orthogonal wave function

  • Particle in one dimensional box (Infinite Potential Well)

  • Minimum Energy Or Zero Point Energy of a Particle in an one dimensional potential box or Infinite Well

  • Normalization of the wave function of a particle in one dimension box or infinite potential well

  • Orthogonality of the wave functions of a particle in one dimension box or infinite potential well

  • Eigen value of the momentum of a particle in one dimension box or infinite potential well

  • Schrodinger's equation for the complex conjugate waves function

  • Probability Current Density for a free particle in Quantum Mechanics

  • Ehrenfest's Theorem and Derivation

  • Momentum wave function for a free particle

  • Wave function of a particle in free state

  • One dimensional Step Potential Barrier for a Particle

























  • Blog Archive