Gravitational field, Intensity of Gravitational field and its expression

Definition of Gravitational Field:

The region around an object in which another object experiences a gravitational force then the region of that object is called the gravitational field.

Gravitational Field Intensity:

The force applied per unit mass of an object that is placed in the gravitational field is called the intensity of the gravitational field.

$\overrightarrow{E}=- \frac{G \: M}{r^{2}} \hat{r}$

The Expression for gravitational field intensity:

Let us consider
The mass of a lighter object that experience the force = $m$
The mass of a heavy object that produces the gravitational field= $M$
The distance between the objects = $r$

The gravitational force between the objects is

$F=G\frac{M\:m}{r^{2}} \qquad(1)$

Now the force per unit mass i.e Gravitational field intensity

$E=-\frac{F}{m} \qquad (2)$

Here the negative indicates that the direction of force is opposite to $\hat{r}$

The vector form of the gravitational field intensity

$\overrightarrow{E}=-\frac{F}{m} \hat{r}$

Where $\hat{r} \left (=\frac{\overrightarrow{r}}{r} \right)$ is the unit vector along the $\overrightarrow{r}$

Now substitute the value of $F$ in the above equation $(2)$. Therefore we get,

$E=-G \frac{M\:m}{m r^{2}}$

$E=- \frac{G \: M}{r^{2}}$

The vector form of the above equation

$\overrightarrow{E}=- \frac{G \: M}{r^{2}} \hat{r}$

Popular Posts

Study-Material













  • Classical world and Quantum world

  • Inadequacy of classical mechanics

  • Drawbacks of Old Quantum Theory

  • Bohr's Quantization Condition

  • Energy distribution spectrum of black body radiation

  • Energy distribution laws of black body radiation

  • The Compton Effect | Experiment Setup | Theory | Theoretical Expression | Limitation | Recoil Electron

  • Davisson and Germer's Experiment and Verification of the de-Broglie Relation

  • Significance of Compton's Effect

  • Assumptions of Planck’s Radiation Law

  • Derivation of Planck's Radiation Law

  • de-Broglie Concept of Matter wave

  • Definition and derivation of the phase velocity and group velocity of wave

  • Relation between group velocity and phase velocity ($V_{g}=V_{p}-\lambda \frac{dV_{p}}{d\lambda }$)

  • Group velocity is equal to particle velocity($V_{g}=v$)

  • Product of phase velocity and group velocity is equal to square of speed of light ($V_{p}.V_{g}=c^{2}$)

  • Heisenberg uncertainty principle

  • Generation of wave function for a free particle

  • Physical interpretation of the wave function

  • Derivation of time dependent Schrodinger wave equation

  • Derivation of time independent Schrodinger wave equation

  • Eigen Function, Eigen Values and Eigen Vectors

  • Postulate of wave mechanics or Quantum Mechanics

  • Quantum Mechanical Operators

  • Normalized and Orthogonal wave function

  • Particle in one dimensional box (Infinite Potential Well)

  • Minimum Energy Or Zero Point Energy of a Particle in an one dimensional potential box or Infinite Well

  • Normalization of the wave function of a particle in one dimension box or infinite potential well

  • Orthogonality of the wave functions of a particle in one dimension box or infinite potential well

  • Eigen value of the momentum of a particle in one dimension box or infinite potential well

  • Schrodinger's equation for the complex conjugate waves function

  • Probability Current Density for a free particle in Quantum Mechanics

  • Ehrenfest's Theorem and Derivation

  • Momentum wave function for a free particle

  • Wave function of a particle in free state

  • One dimensional Step Potential Barrier for a Particle

























  • Blog Archive