Skip to main content

Newton's rings in reflected monochromatic light

Newton's Rings:

Experimental Arrangement:

  • A plano-convex lens $l_{1}$ of large radius of curvature is placed on a plane glass plate $G_{1}$ with the curved surface touching the glass plate.

  • An air film is enclosed between the curved surface of the lens and the glass plate.

  • A sodium vapor lamp $S$ is kept at the focus of a biconvex lens $L$ which converts the diverging beam of light into a parallel beam. The parallel beam of light is made to fall on a glass plate $G_{2}$ kept at an angle of $45^{\circ}$ with the incident beam.

  • A part of incident light is reflected toward the plano-convex lens. This light is again reflected back, partially from the top and partially from the bottom of the air fil and transmitted by the glass plate $G_{2}$. The interference of these rays is observed through a microscope $M$.

  • Newtons Rings Experiment Setup-Ray Diagram
    Newtons Rings Experiment Setup-Ray Diagram
    Explanation of the formation of Newton's rings:

  • Division of amplitude takes place at the curved surface of the plano-convex lens.

  • The incident light is partially reflected and partially transmitted at the curved surface.

  • The transmitted ray is reflected from the glass plate. These two rays interfere in reflected light

  • The path difference between these rays depends on the thickness of the air film enclosed between the curved surfaces of the lens and glass plate which increases radially outward from the center. The thickness of the air film is zero at the center

  • Formation of Newton Rings
    Formation of Newton Rings
    Path difference:

    Let $t$ is the thickness of air film at a radial distance of $r$ and $R$ is the radius of curvature. So the path difference for a wedge-shaped film is

    $\Delta=2 \mu t \: cos(r+\alpha) \pm \frac{\lambda}{2} \qquad(1)$

    HereRefractive index of air film ($\mu)=1$$\alpha$ is very small i.e. $\alpha \approx 0$For normal incidence $r=0$ i.e $cos(\alpha+r)=1$

    Now apply the above condition to equation $(1)$ then we get

    $\Delta = 2t + \frac{\lambda}{2} \qquad(2)$

    Newton’s Rings Diagram for Path difference Formula Calculation
    Newton’s Rings Diagram for Path difference Formula Calculation
    Form figure, In $\Delta OAB$, apply the Pythagoras theorem

    $OA^{2}=OB^{2}+AB^{2}$

    $R^{2}=(R-t)^{2}+r^{2}$

    $R^{2}=R^{2}+t^{2}-2Rt+r^{2}$

    $2Rt=t^{2}+r^{2}$

    As $t$ is very small, $t^{2}$ can be neglected in comparison with $r^{2}$. So

    $2Rt=r^{2}$

    $2t=\frac{r^{2}}{R} \qquad(3)$

    Here $r$- Radius of a circle for which thickness is $t$

    If $D$ is the diameter of this circle then

    $r=\frac{D}{2}$

    So from equation $(3)$

    $2t=\frac{D^{2}}{4R} \qquad(4)$

    Substitute the value of $2t$ in equation $(2)$ then we get

    $\Delta = \frac{D^{2}}{4R}+\frac{\lambda}{2}$

    Diameter of Bright rings:

    For bright rings, the condition for constructive interference is satisfied. i.e.

    $\Delta =n \lambda$

    So from the above equations, we get

    $\frac{D^{2}}{4R}+\frac{\lambda}{2}=n \lambda $

    Where $D_{n}$- Diameter of the $n^{th}$ bright ring

    $\frac{D^{2}}{4R}=(2n-1) \frac{\lambda}{2}$

    $D_{n}= \sqrt {2 \lambda R (2n-1)}$

    Where $n=1,2,3,4........$

    $D_{n} \propto \sqrt{(2n-1)}$

    i.e The diameter of the bright rings are proportional to the square root of odd natural numbers.

    Diameter of Dark ring:

    Condition for destructive interference is satisfied for dark rings i.e.

    $\Delta=(2n+1)\frac{\lambda}{2}$

    $\frac{D^{2}}{4R}+\frac{\lambda}{2}=(2n+1)\frac{\lambda}{2}$

    $\frac{D^{2}}{4R}+\frac{\lambda}{2}=n \lambda + \frac{\lambda}{2}$

    $\frac{D^{2}}{4R}=n \lambda$

    $D_{n}= \sqrt{4Rn\lambda}$

    $D_{n} \propto \sqrt{n}$

    Where $n=1,2,3,4........$

    i.e The diameter of dark rings are proportional to square root of natural numbers.

    Comments

    Popular Posts

    Numerical Aperture and Acceptance Angle of the Optical Fibre

    Angle of Acceptance → If incident angle of light on the core for which the incident angle on the core-cladding interface equals the critical angle then incident angle of light on the core is called the "Angle of Acceptance. Transmission of light when the incident angle is equal to the acceptance angle If the incident angle is greater than the acceptance angle i.e. $\theta_{i}>\theta_{0}$ then the angle of incidence on the core-cladding interface will be less than the critical angle due to which part of the incident light is transmitted into cladding as shown in the figure below Transmission of light when the incident angle is greater than the acceptance angle If the incident angle is less than the acceptance angle i.e. $\theta_{i}<\theta_{0}$ then the angle of incidence on the core-cladding interface will be greater than the critical angle for which total internal reflection takes place inside the core. As shown in the figure below Transmission of lig

    Fraunhofer diffraction due to a single slit

    Let $S$ be a point monochromatic source of light of wavelength $\lambda$ placed at the focus of collimating lens $L_{1}$. The light beam is incident normally from $S$ on a narrow slit $AB$ of width $e$ and is diffracted from it. The diffracted beam is focused at the screen $XY$ by another converging lens $L_{2}$. The diffraction pattern having a central bright band followed by an alternative dark and bright band of decreasing intensity on both sides is obtained. Analytical Explanation: The light from the source $S$ is incident as a plane wavefront on the slit $AB$. According to Huygens's wave theory, every point in $AB$ sends out secondary waves in all directions. The undeviated ray from $AB$ is focused at $C$ on the screen by the lens $L_{2}$ while the rays diffracted through an angle $\theta$ are focussed at point $p$ on the screen. The rays from the ends $A$ and $B$ reach $C$ in the same phase and hence the intensity is maximum. Fraunhofer diffraction due to

    Particle in one dimensional box (Infinite Potential Well)

    Let us consider a particle of mass $m$ that is confined to one-dimensional region $0 \leq x \leq L$ or the particle is restricted to move along the $x$-axis between $x=0$ and $x=L$. Let the particle can move freely in either direction, between $x=0$ and $x=L$. The endpoints of the region behave as ideally reflecting barriers so that the particle can not leave the region. A potential energy function $V(x)$ for this situation is shown in the figure below. Particle in One-Dimensional Box(Infinite Potential Well) The potential energy inside the one -dimensional box can be represented as $\begin{Bmatrix} V(x)=0 &for \: 0\leq x \leq L \\ V(x)=\infty & for \: 0> x > L \\ \end{Bmatrix}$ $\frac{d^{2} \psi(x)}{d x^{2}}+\frac{2m}{\hbar^{2}}(E-V)\psi(x)=0 \qquad(1)$ If the particle is free in a one-dimensional box, Schrodinger's wave equation can be written as: $\frac{d^{2} \psi(x)}{d x^{2}}+\frac{2mE}{\hbar^{2}}\psi(x)=0$ $\frac{d^{2} \psi(x)}{d x