Circuit containing Inductor and Capacitor in Series (L-C Series Circuit )

Mathematical Analysis of L-C Series Circuit :
Alternating Current Circuit Containing Inductor and Capacitor in series
Let us consider, a circuit containing inductor $L$ capacitor $C$ and these are connected in series. If an alternating voltage source is applied across it then the resultant voltage of the L-C circuit

$V=V_{L} - V_{C} \qquad(1)$

We know that:

$V_{L} = iX_{L}$
$V_{C} = iX_{C}$

So from equation $(1)$

$V= iX_{L} - iX_{C} $

$V=i \left(X_{L} - X_{C} \right) $

$\frac{V}{i}=\left(X_{L} - X_{C} \right) $

$Z=\left(X_{L} - X_{C} \right) \qquad(2)$

Where
$Z \rightarrow$ Impedance of L-C circuit.
$X_{L} \rightarrow$ Inductive Reactance which has value $\omega L$
$X_{C} \rightarrow$ Capacitive Reactance which has value $\frac{1}{\omega C}$

So from equation $(2)$, we get

$Z=\left( \omega L - \frac{1}{\omega C} \right) \qquad(3)$

The phase of resultant voltage:
Phasor Diagram For L-C Circuit
The phase of resultant voltage from current is $90^{\circ}$ as shown in the figure above.

The Impedance and Phase at Resonance Condition:($X_{L} = X_{C}$):

At resonance $X_{L} = X_{C} \qquad(5)$

$\omega L = \frac{1}{\omega C}$

$\omega^{2} = \frac{1}{L C}$

$\omega = \sqrt{\frac{1}{L C}}$

$2 \pi f = \sqrt{\frac{1}{L C}}$

$ f = \frac{1}{2 \pi}\sqrt{\frac{1}{L C}}$

Where $f \rightarrow$ Natural frequency of the circuit.

1.) The Impedance of the circuit at resonance condition:

Substitute the resonance condition i.e. $X_{L} = X_{C}$ in equation $(2)$ then the impedance of the L-C Circuit

$Z=0$

The impedance of the L-C circuit at resonance condition is zero.

2.) The Phase of resultant voltage at resonance condition:

There is not any change in the phase of resultant voltage at resonance condition i.e. that will be the same $90^{\circ}$.

Popular Posts

Study-Material













  • Classical world and Quantum world

  • Inadequacy of classical mechanics

  • Drawbacks of Old Quantum Theory

  • Bohr's Quantization Condition

  • Energy distribution spectrum of black body radiation

  • Energy distribution laws of black body radiation

  • The Compton Effect | Experiment Setup | Theory | Theoretical Expression | Limitation | Recoil Electron

  • Davisson and Germer's Experiment and Verification of the de-Broglie Relation

  • Significance of Compton's Effect

  • Assumptions of Planck’s Radiation Law

  • Derivation of Planck's Radiation Law

  • de-Broglie Concept of Matter wave

  • Definition and derivation of the phase velocity and group velocity of wave

  • Relation between group velocity and phase velocity ($V_{g}=V_{p}-\lambda \frac{dV_{p}}{d\lambda }$)

  • Group velocity is equal to particle velocity($V_{g}=v$)

  • Product of phase velocity and group velocity is equal to square of speed of light ($V_{p}.V_{g}=c^{2}$)

  • Heisenberg uncertainty principle

  • Generation of wave function for a free particle

  • Physical interpretation of the wave function

  • Derivation of time dependent Schrodinger wave equation

  • Derivation of time independent Schrodinger wave equation

  • Eigen Function, Eigen Values and Eigen Vectors

  • Postulate of wave mechanics or Quantum Mechanics

  • Quantum Mechanical Operators

  • Normalized and Orthogonal wave function

  • Particle in one dimensional box (Infinite Potential Well)

  • Minimum Energy Or Zero Point Energy of a Particle in an one dimensional potential box or Infinite Well

  • Normalization of the wave function of a particle in one dimension box or infinite potential well

  • Orthogonality of the wave functions of a particle in one dimension box or infinite potential well

  • Eigen value of the momentum of a particle in one dimension box or infinite potential well

  • Schrodinger's equation for the complex conjugate waves function

  • Probability Current Density for a free particle in Quantum Mechanics

  • Ehrenfest's Theorem and Derivation

  • Momentum wave function for a free particle

  • Wave function of a particle in free state

  • One dimensional Step Potential Barrier for a Particle

























  • Blog Archive