Characteristic impedance of electromagnetic wave

We know that the electromagnetic wave propagates perpendicular to both electric field and magnetic field which can describe as

$\overrightarrow{k} \times \overrightarrow{E}= \omega \overrightarrow{B} \qquad(1)$

If $\hat{n}$ is a unit vector in the direction of the propagation then

$\overrightarrow{k}=k \hat{n}$

Substitute these values in equation$(1)$ then we get

$k(\hat{n} \times \overrightarrow{E})= \omega \overrightarrow{B}$

$\overrightarrow{B}= \frac{k}{\omega}(\hat{n} \times \overrightarrow{E}) \qquad(2)$

But the value of $k$ and $\omega$ is

$k=\frac{2\pi}{\lambda}$

$\omega=2 \pi \nu$

Then value of $\frac{k}{\omega}=\frac{1}{c}$

Now substitute the value of $\frac{k}{\omega}$ in equation$(2)$ then we get

$\overrightarrow{B}= \frac{1}{c}(\hat{n} \times \overrightarrow{E})$

The magnitude form of the above equation can be written as

$B=\frac{E}{c}$

$\frac{E}{B}=c$

$\frac{E}{\mu_{0}H}=c \qquad (\because B=\mu_{0} H)$

$\frac{E}{H}=\mu_{0}c$

$\frac{E}{H}=\frac{\mu_{0}}{\sqrt{\mu_{0} \epsilon_{0}}} \qquad(\because c=\frac{1}{\sqrt{\mu_{0} \epsilon_{0}}})$

$\frac{E}{H}= \sqrt{\frac{\mu_{0}}{\epsilon_{0}}}$

The term $\frac{E}{H}$ has dimensions of the impedance and is known as characteristic impedance or intrinsic impedance of free space. It is represented by $(Z_{0})$.

$Z_{0}=\frac{E}{H}=\sqrt{\frac{\mu_{0}}{\epsilon_{0}}}$

Now substitute the value of $\mu_{0}$ and $\epsilon_{0}$ i.e.

$\mu_{0}=4\pi \times 10^{-7}$

$\epsilon_{0}=8.854 \times 10^{-12}$

$Z_{0}=\sqrt{\frac{4\pi \times 10^{-7}}{8.854 \times 10^{-12}}}$

$Z_{0}=376.73\: \Omega $

$Z_{0}=120\pi \: \Omega $

Popular Posts

Study-Material













  • Classical world and Quantum world

  • Inadequacy of classical mechanics

  • Drawbacks of Old Quantum Theory

  • Bohr's Quantization Condition

  • Energy distribution spectrum of black body radiation

  • Energy distribution laws of black body radiation

  • The Compton Effect | Experiment Setup | Theory | Theoretical Expression | Limitation | Recoil Electron

  • Davisson and Germer's Experiment and Verification of the de-Broglie Relation

  • Significance of Compton's Effect

  • Assumptions of Planck’s Radiation Law

  • Derivation of Planck's Radiation Law

  • de-Broglie Concept of Matter wave

  • Definition and derivation of the phase velocity and group velocity of wave

  • Relation between group velocity and phase velocity ($V_{g}=V_{p}-\lambda \frac{dV_{p}}{d\lambda }$)

  • Group velocity is equal to particle velocity($V_{g}=v$)

  • Product of phase velocity and group velocity is equal to square of speed of light ($V_{p}.V_{g}=c^{2}$)

  • Heisenberg uncertainty principle

  • Generation of wave function for a free particle

  • Physical interpretation of the wave function

  • Derivation of time dependent Schrodinger wave equation

  • Derivation of time independent Schrodinger wave equation

  • Eigen Function, Eigen Values and Eigen Vectors

  • Postulate of wave mechanics or Quantum Mechanics

  • Quantum Mechanical Operators

  • Normalized and Orthogonal wave function

  • Particle in one dimensional box (Infinite Potential Well)

  • Minimum Energy Or Zero Point Energy of a Particle in an one dimensional potential box or Infinite Well

  • Normalization of the wave function of a particle in one dimension box or infinite potential well

  • Orthogonality of the wave functions of a particle in one dimension box or infinite potential well

  • Eigen value of the momentum of a particle in one dimension box or infinite potential well

  • Schrodinger's equation for the complex conjugate waves function

  • Probability Current Density for a free particle in Quantum Mechanics

  • Ehrenfest's Theorem and Derivation

  • Momentum wave function for a free particle

  • Wave function of a particle in free state

  • One dimensional Step Potential Barrier for a Particle

























  • Blog Archive