Showing posts with label Units and Dimensions. Show all posts
Showing posts with label Units and Dimensions. Show all posts

Limitations of Dimensional Analysis

Limitations of Dimensional Analysis:

(1) It is not possible to find the numerical value of constants $k$ (dimensionless) present in the formulas by this method. It can be obtained by experiment or other method.

(2) If any physical quantity depends on more than three quantities, then the mutual relation between these quantities cannot be established by this method. However, the dimensional correctness of any given equation of this type can be checked.

(3) If any physical quantity depends on only three physical quantities, but the dimensions of two of the three quantities are the same, then also the mutual relation between these quantities cannot be established by the dimensional method, but the dimensional correctness can be checked.

(4) If an equation has more than one term on one side, like $v=u+at$ (Here two terms on the right side), then this equation cannot be derived by dimensional method. That is, such relations cannot be derived in which there is a positive $(+)$ or negative $(-)$ sign anywhere. But whether the equation is dimensionally correct or not, can be checked.

(5) Deduction of equations containing trigonometric ratios ($ sin \theta$, $cos \theta$, $tan \theta$, etc.), variable exponential ($e^{x}$) and logarithmic ($log\:x$) terms is not possible by dimensional analysis method, but their dimensional truth can be checked.

(6) Whether a physical quantity is vector or scalar cannot be determined by the dimensional analysis method.

(7) If the constant in an equation is not dimensionless, then the dimensional analysis method cannot be used for the deduction of that equation.

(8) For a physical relation represented by an equation to be true, it is a necessary condition for this equation to be in dimensional balance, but only dimensional balance is not sufficient for the physical relation to be true. That is,

"Even if the equation is true physically and mathematically, it may not be true dimensionally."

Popular Posts

Study-Material













  • Classical world and Quantum world

  • Inadequacy of classical mechanics

  • Drawbacks of Old Quantum Theory

  • Bohr's Quantization Condition

  • Energy distribution spectrum of black body radiation

  • Energy distribution laws of black body radiation

  • The Compton Effect | Experiment Setup | Theory | Theoretical Expression | Limitation | Recoil Electron

  • Davisson and Germer's Experiment and Verification of the de-Broglie Relation

  • Significance of Compton's Effect

  • Assumptions of Planck’s Radiation Law

  • Derivation of Planck's Radiation Law

  • de-Broglie Concept of Matter wave

  • Definition and derivation of the phase velocity and group velocity of wave

  • Relation between group velocity and phase velocity ($V_{g}=V_{p}-\lambda \frac{dV_{p}}{d\lambda }$)

  • Group velocity is equal to particle velocity($V_{g}=v$)

  • Product of phase velocity and group velocity is equal to square of speed of light ($V_{p}.V_{g}=c^{2}$)

  • Heisenberg uncertainty principle

  • Generation of wave function for a free particle

  • Physical interpretation of the wave function

  • Derivation of time dependent Schrodinger wave equation

  • Derivation of time independent Schrodinger wave equation

  • Eigen Function, Eigen Values and Eigen Vectors

  • Postulate of wave mechanics or Quantum Mechanics

  • Quantum Mechanical Operators

  • Normalized and Orthogonal wave function

  • Particle in one dimensional box (Infinite Potential Well)

  • Minimum Energy Or Zero Point Energy of a Particle in an one dimensional potential box or Infinite Well

  • Normalization of the wave function of a particle in one dimension box or infinite potential well

  • Orthogonality of the wave functions of a particle in one dimension box or infinite potential well

  • Eigen value of the momentum of a particle in one dimension box or infinite potential well

  • Schrodinger's equation for the complex conjugate waves function

  • Probability Current Density for a free particle in Quantum Mechanics

  • Ehrenfest's Theorem and Derivation

  • Momentum wave function for a free particle

  • Wave function of a particle in free state

  • One dimensional Step Potential Barrier for a Particle

























  • Blog Archive