Vector Form of Coulomb's Law

Derivation of vector form of Coulomb's law:

Let us consider, Two-point charges $+q_{1}$ and $+q_{2}$ are separated at a distance $r$ (magnitude only) in a vacuum as shown in the figure given below.
Vector form Coulomb’s Law
Let $\overrightarrow{F_{12}}$ is the force on charge $+q_{1}$ due to charge $+q_{2}$ and $\overrightarrow{F_{21}}$ is the force on charge $+q_{2}$ due to charge $+q_{1}$. Then

$\overrightarrow{F_{12}}=\frac{1}{4\pi \varepsilon _{0}}\frac{q_{1}q_{2}}{r^2}\:\:\hat{r_{21}}\qquad(1)$

Where $\widehat{r}_{21}$ ➝ Unit Vector Pointing from charge $+q_{2}$ to charge $+q_{1}$

$\overrightarrow{F_{21}}=\frac{1}{4\pi \varepsilon _{0}}\frac{q_{1}q_{2}}{r^2}\:\:\hat{r_{12}}\qquad(2)$

Where$\widehat{r}_{12}$ ➝ Unit Vector Pointing from charge $+q_{1}$ to charge $+q_{2}$

From the above figure, we can conclude that the direction of unit vector $\widehat{r}_{12}$ and $\widehat{r}_{21}$ is opposite. i.e.

$\hat{r_{12}}=-\hat{r_{21}}\qquad(3)$

So from equation $(2)$ and equation $(3)$, we can write as

$\overrightarrow{F_{21}}=-\frac{1}{4\pi \varepsilon _{0}}\frac{q_{1}q_{2}}{r^2}\:\:\hat{r_{21}}\qquad(4)$

Now, Put the value of equation $(1)$ in equation $(4)$. So equation $(4)$, we can write as

$\overrightarrow{F_{21}}=-\overrightarrow{F_{12}}\qquad (5)$

The above equation $(5)$ shows that " The Coulomb's force is Action and Reaction Pair. This force acts on different bodies." If

$\overrightarrow{F_{12}}=\overrightarrow{F_{21}}=\overrightarrow{F}$

And

$ \hat{r_{12}}=\hat{r_{21}}=\hat{r}$

Then generalized vector form of Coulomb's Law$\overrightarrow{F}=\frac{1}{4\pi\varepsilon _{0}}\frac{q_{1}q_{2}}{r^2}\:\hat{r}$

Where $\hat{r}=\frac{\overrightarrow{r}}{r}$

$ \overrightarrow{F}=\frac{1}{4\pi \varepsilon _{0}}\frac{q_{1}q_{2}}{r^3}\:\overrightarrow{r}$

Where $\overrightarrow{r}$ is displacement vector

This is a generalized vector form of Coulomb's law.

Popular Posts

Study-Material













  • Classical world and Quantum world

  • Inadequacy of classical mechanics

  • Drawbacks of Old Quantum Theory

  • Bohr's Quantization Condition

  • Energy distribution spectrum of black body radiation

  • Energy distribution laws of black body radiation

  • The Compton Effect | Experiment Setup | Theory | Theoretical Expression | Limitation | Recoil Electron

  • Davisson and Germer's Experiment and Verification of the de-Broglie Relation

  • Significance of Compton's Effect

  • Assumptions of Planck’s Radiation Law

  • Derivation of Planck's Radiation Law

  • de-Broglie Concept of Matter wave

  • Definition and derivation of the phase velocity and group velocity of wave

  • Relation between group velocity and phase velocity ($V_{g}=V_{p}-\lambda \frac{dV_{p}}{d\lambda }$)

  • Group velocity is equal to particle velocity($V_{g}=v$)

  • Product of phase velocity and group velocity is equal to square of speed of light ($V_{p}.V_{g}=c^{2}$)

  • Heisenberg uncertainty principle

  • Generation of wave function for a free particle

  • Physical interpretation of the wave function

  • Derivation of time dependent Schrodinger wave equation

  • Derivation of time independent Schrodinger wave equation

  • Eigen Function, Eigen Values and Eigen Vectors

  • Postulate of wave mechanics or Quantum Mechanics

  • Quantum Mechanical Operators

  • Normalized and Orthogonal wave function

  • Particle in one dimensional box (Infinite Potential Well)

  • Minimum Energy Or Zero Point Energy of a Particle in an one dimensional potential box or Infinite Well

  • Normalization of the wave function of a particle in one dimension box or infinite potential well

  • Orthogonality of the wave functions of a particle in one dimension box or infinite potential well

  • Eigen value of the momentum of a particle in one dimension box or infinite potential well

  • Schrodinger's equation for the complex conjugate waves function

  • Probability Current Density for a free particle in Quantum Mechanics

  • Ehrenfest's Theorem and Derivation

  • Momentum wave function for a free particle

  • Wave function of a particle in free state

  • One dimensional Step Potential Barrier for a Particle

























  • Blog Archive