High Monochromaticity of Laser Light

High Monochromaticity:

A laser beam is highly monochromatic. The monochromaticity of the laser beam is much more than that of any traditional monochromatic source. The line spread of a laser beam is very small in comparison to the light from a traditional source. This difference arises because conventional sources emit wave trains of very short duration and length, whereas, laser emit continuous waves of very long duration. The random spontaneous emission in the laser cavity is one of the mechanisms that determine a laser's ultimate spectral line width. It should be noted that no light source including laser light source, is perfectly monochromatic but a better approximation to the ideal condition may be considered in the case of the laser beam. The spread of light from a normal monochromatic source range over a wavelength of the order of $100 -1000 \overset{\circ}{A}$ while in lasers it is of the order of few angstroms $(\lt 10 \overset{\circ}{A})$ only.
High monochromaticity of laser
The high spectral purity of laser radıation leads directly to applications in basic scientific research including photochemistry, luminescence excitation spectroscopy absorption, Raman spectroscopy, and also in communication. The degree of non-monochromaticity $\xi$ of light is characterized by the spread in frequency of a line by the line width $\Delta \nu $ and is expressed as:

$\xi=\frac{\Delta \nu}{ \nu_{\circ}}$

where $\nu_{\circ}$ is the central frequency. If $\Delta \nu $ approaches zero the degree of non-monochromaticity tends to zero which is an ideal condition. Absolute monochromaticity $(\Delta \nu =0)$ is not attainable in practice even with laser light. The spreads of two light sources, laser light, and normal light, are shown in the figure above. The degree of non-monochromaticity may also be written in terms of coherence time $(\tau_{C})$ or coherence length $(L_{C})$ as follows:

$\xi=\frac{1}{\tau_{C} \: \nu_{\circ}}$

$\xi=\frac{c}{L_{C} \: \nu_{\circ}}$

This relation shows that the monochromaticity will be large for higher values of coherence time or coherence length. The bandwidth of a laser light from a high-quality He-Ne gas laser is of the order of $500Hz$ $(\Delta \nu =500 Hz)$ corresponding to coherence length of the order of $600 km$ $(\tau_{C} = 2 \times l0^{-3} sec)$.

Popular Posts

Study-Material













  • Classical world and Quantum world

  • Inadequacy of classical mechanics

  • Drawbacks of Old Quantum Theory

  • Bohr's Quantization Condition

  • Energy distribution spectrum of black body radiation

  • Energy distribution laws of black body radiation

  • The Compton Effect | Experiment Setup | Theory | Theoretical Expression | Limitation | Recoil Electron

  • Davisson and Germer's Experiment and Verification of the de-Broglie Relation

  • Significance of Compton's Effect

  • Assumptions of Planck’s Radiation Law

  • Derivation of Planck's Radiation Law

  • de-Broglie Concept of Matter wave

  • Definition and derivation of the phase velocity and group velocity of wave

  • Relation between group velocity and phase velocity ($V_{g}=V_{p}-\lambda \frac{dV_{p}}{d\lambda }$)

  • Group velocity is equal to particle velocity($V_{g}=v$)

  • Product of phase velocity and group velocity is equal to square of speed of light ($V_{p}.V_{g}=c^{2}$)

  • Heisenberg uncertainty principle

  • Generation of wave function for a free particle

  • Physical interpretation of the wave function

  • Derivation of time dependent Schrodinger wave equation

  • Derivation of time independent Schrodinger wave equation

  • Eigen Function, Eigen Values and Eigen Vectors

  • Postulate of wave mechanics or Quantum Mechanics

  • Quantum Mechanical Operators

  • Normalized and Orthogonal wave function

  • Particle in one dimensional box (Infinite Potential Well)

  • Minimum Energy Or Zero Point Energy of a Particle in an one dimensional potential box or Infinite Well

  • Normalization of the wave function of a particle in one dimension box or infinite potential well

  • Orthogonality of the wave functions of a particle in one dimension box or infinite potential well

  • Eigen value of the momentum of a particle in one dimension box or infinite potential well

  • Schrodinger's equation for the complex conjugate waves function

  • Probability Current Density for a free particle in Quantum Mechanics

  • Ehrenfest's Theorem and Derivation

  • Momentum wave function for a free particle

  • Wave function of a particle in free state

  • One dimensional Step Potential Barrier for a Particle

























  • Blog Archive