Intensity of a wave

Definition of Intensity of a wave:
In a medium, the energy per unit area per unit time delivered perpendicuar to the direction of the wave propagation s caled the intensity of the wave. It is denoted by $I$.

If the energy $E$ is delivered in the time $t$ rom area $A$ perpendicular to the wave propagation, then

$I=\frac{E}{At} \qquad{1}$

Unit: $Joule/m^{2}-sec$ or $watt/m^{2}$

Dimensional formula: $[MT^{-3}]$

We know that the total mechanical energy of a vibrating particle is

$E=\frac{1}{2}m \omega^{2} a^{2}$

Where $\omega$ is the angular frequency and $a$ is the amplitude of the wave.

$E=\frac{1}{2}m (2\pi n)^{2} a^{2} \qquad \left( \omega=2\pi n \right)$

$E=2 \pi^{2} m n^{2} a^{2} \qquad(2)$

Where $m$ is the mass of the vibrating particle.

Now substitute the value of $E$ from equation $(2)$ to equation $(1)$. So the intensity of the wave

$I=\frac{2 \pi^{2} m n^{2} a^{2}}{At} \qquad(3)$

If the wave travels the distance $x$ in time $t$ with velocity $v$, Then

$t=\frac{x}{v}$

Now substitute the value of the above equation in equation $(3)$

$I=\frac{2 \pi^{2} m v n^{2} a^{2}}{Ax}$

$I=\frac{2 \pi^{2} m v n^{2} a^{2}}{V}$

Where $V$ is the volume of the corresponding medium during the wave propagation in time $t$.

$I=2 \pi^{2} \rho v n^{2} a^{2} \qquad \left(\because \rho=\frac{m}{V} \right)$

It is clear that for wave propagation in a medium with a constant velocity, i.e. wave's intensity is directly proportional to the square of amplitude and frequency both.

$I\propto a^{2}$ and $I \propto n^{2}$

Popular Posts

Study-Material













  • Classical world and Quantum world

  • Inadequacy of classical mechanics

  • Drawbacks of Old Quantum Theory

  • Bohr's Quantization Condition

  • Energy distribution spectrum of black body radiation

  • Energy distribution laws of black body radiation

  • The Compton Effect | Experiment Setup | Theory | Theoretical Expression | Limitation | Recoil Electron

  • Davisson and Germer's Experiment and Verification of the de-Broglie Relation

  • Significance of Compton's Effect

  • Assumptions of Planck’s Radiation Law

  • Derivation of Planck's Radiation Law

  • de-Broglie Concept of Matter wave

  • Definition and derivation of the phase velocity and group velocity of wave

  • Relation between group velocity and phase velocity ($V_{g}=V_{p}-\lambda \frac{dV_{p}}{d\lambda }$)

  • Group velocity is equal to particle velocity($V_{g}=v$)

  • Product of phase velocity and group velocity is equal to square of speed of light ($V_{p}.V_{g}=c^{2}$)

  • Heisenberg uncertainty principle

  • Generation of wave function for a free particle

  • Physical interpretation of the wave function

  • Derivation of time dependent Schrodinger wave equation

  • Derivation of time independent Schrodinger wave equation

  • Eigen Function, Eigen Values and Eigen Vectors

  • Postulate of wave mechanics or Quantum Mechanics

  • Quantum Mechanical Operators

  • Normalized and Orthogonal wave function

  • Particle in one dimensional box (Infinite Potential Well)

  • Minimum Energy Or Zero Point Energy of a Particle in an one dimensional potential box or Infinite Well

  • Normalization of the wave function of a particle in one dimension box or infinite potential well

  • Orthogonality of the wave functions of a particle in one dimension box or infinite potential well

  • Eigen value of the momentum of a particle in one dimension box or infinite potential well

  • Schrodinger's equation for the complex conjugate waves function

  • Probability Current Density for a free particle in Quantum Mechanics

  • Ehrenfest's Theorem and Derivation

  • Momentum wave function for a free particle

  • Wave function of a particle in free state

  • One dimensional Step Potential Barrier for a Particle

























  • Blog Archive