Comparison of Single Mode and Multimode Index Fibres

Comparison of Single-Mode Index Fibres and Multimode Index Fibres→

S.No. Single Mode Index Fibre Multimode Index Fibre
1. In single mode index fibre, the diameter of the core is very small and is of the same order as the wavelength of light to be propagated. It is in the range $5\mu m - 10 \mu m$. The Cladding diameter is about $125 \mu m$. In multimode index fibre, the diameter of the core is large. It is in the range $30\mu m - 100 \mu m$. The Cladding diameter is in the range $125 \mu m - 500 \mu m$.
2. The difference in refractive indices of the core and cladding material is very small. The difference in the refractive indices of the core and the cladding materials is large.
3. In single-mode fibre, only a single mode is propagated. In multi-mode fibre, a large number of modes can be propagated.
4. Single mod fibre does require a much more sophisticated light source in order to launch enough light into the tiny core. Multi-mode fibre does not require any sophisticated light source.
5. Single-mode fibre is more expensive but more effective. Multimode fibre is less expensive.
6. The acceptance angle and the size of the acceptance cone of single-mode fibre are small. The acceptance angle and the size of the acceptance cone of multimode fibre are large.
7. The numerical aperture of single-mode fibre is small. The numerical aperture of multimode fibre is large.
8. Single-mode fibre has a very high information-carrying capability. Multimode fibre has low information carrying capability.
9. Single-mode fibre is used when sort distance communication is required. It is used for long-distance communication.
10. Model dispersion in single-mode fibre is almost nil. Model dispersion in multimode fibre is the dominant source of dispersion.
11. Material dispersion in single-mode fibre is low. Material dispersion in multimode fibre is large.
12. When a transmission has a very large bandwidth, single-mode fibre is used Example: Under Sea Cables. When the system bandwidth requirement is low, multimode fibres are used Example: Datalink

Popular Posts

Study-Material













  • Classical world and Quantum world

  • Inadequacy of classical mechanics

  • Drawbacks of Old Quantum Theory

  • Bohr's Quantization Condition

  • Energy distribution spectrum of black body radiation

  • Energy distribution laws of black body radiation

  • The Compton Effect | Experiment Setup | Theory | Theoretical Expression | Limitation | Recoil Electron

  • Davisson and Germer's Experiment and Verification of the de-Broglie Relation

  • Significance of Compton's Effect

  • Assumptions of Planck’s Radiation Law

  • Derivation of Planck's Radiation Law

  • de-Broglie Concept of Matter wave

  • Definition and derivation of the phase velocity and group velocity of wave

  • Relation between group velocity and phase velocity ($V_{g}=V_{p}-\lambda \frac{dV_{p}}{d\lambda }$)

  • Group velocity is equal to particle velocity($V_{g}=v$)

  • Product of phase velocity and group velocity is equal to square of speed of light ($V_{p}.V_{g}=c^{2}$)

  • Heisenberg uncertainty principle

  • Generation of wave function for a free particle

  • Physical interpretation of the wave function

  • Derivation of time dependent Schrodinger wave equation

  • Derivation of time independent Schrodinger wave equation

  • Eigen Function, Eigen Values and Eigen Vectors

  • Postulate of wave mechanics or Quantum Mechanics

  • Quantum Mechanical Operators

  • Normalized and Orthogonal wave function

  • Particle in one dimensional box (Infinite Potential Well)

  • Minimum Energy Or Zero Point Energy of a Particle in an one dimensional potential box or Infinite Well

  • Normalization of the wave function of a particle in one dimension box or infinite potential well

  • Orthogonality of the wave functions of a particle in one dimension box or infinite potential well

  • Eigen value of the momentum of a particle in one dimension box or infinite potential well

  • Schrodinger's equation for the complex conjugate waves function

  • Probability Current Density for a free particle in Quantum Mechanics

  • Ehrenfest's Theorem and Derivation

  • Momentum wave function for a free particle

  • Wave function of a particle in free state

  • One dimensional Step Potential Barrier for a Particle

























  • Blog Archive