Comparison of Step Index and Graded Index Fibres

Comparison of Step Index Fibres and Graded Index Fibres(GRIN)→

S.No. Step Index Fibre Graded Index Fibre
1. In a step-index fibre, the refractive index of the core a constant value. In graded-index fibre, the refractive index in the core decreases continuously in a nearly parabolic manner from a maximum value at the centre of the core to a constant value at the core-cladding interface.
2. For a step-index fibre, the variation of refractive index is mathematically expressed as,
$\begin{cases} & \mu(r)=\mu_{1} \qquad 0 < r < a \quad for (core)\\ & \mu(r)=\mu_{2} \qquad r >a \quad for(Cladding)\\ \end{cases} \\ Where \: \mu_{1} > \mu{2} $
Parabolic refractive index variation in GRIN fibre is mathematically expressed as,
$ \begin{cases} & \mu^{2}(r)=\mu^{2}_{1} \left[ 1- \left(\frac{r}{\alpha} \right)^{2} \right] \qquad 0 < r < a \quad for (core) \\ & \mu(r)=\mu^{2}_{2} \qquad \qquad \qquad \qquad r > a \quad for (Cladding) \end{cases} $
3. In the step-index fibre, the propagating light rays reflect abruptly from the Core cladding boundary. In graded-index fibre, the propagating light rays bend smoothly as they approach the cladding.
4. for given fibre diameter, the numerical aperture of step-index fibre is large. For the same fibre diameter, the numerical aperture of graded-index fibre is small.
5. In the step-index fibre, there may be some irregularities at the interface between the core and cladding. In the graded-index fibre, there are no such irregularities at the interface between core and cladding.
6. The step-index fibre has higher attenuation. The graded-index fibre has lower attenuation.
7. For a step-index fibre of a given physical size, with a loss of power of the order of $12 \frac{dB}{km}$, the numerical aperture is of the order of $0.2$ to $0.35$. For a graded-index fibre of the same physical size, with an attenuation between $5$ to $10 \frac{dB}{km}$, the numerical aperture tends to run between $0.16$ and $0.2$
8. In step index fibre, the time interval at the output end or pulse dispersion is expressed as,
$\Delta \tau = \frac{\mu_{1} l}{c} \left ( \frac{\mu_{1}}{\mu_{2}} - 1 \right)=\frac{\mu_{1} l}{c} \Delta$
Where $l$ → The length of the fibre.
In a graded index fibre, the time interval at the output end or pulse dispersion is expressed as,
$\Delta \tau = \frac{\mu_{2} l}{2c} \left ( \frac{\mu_{1} - \mu_{2}} {\mu_{2}} \right)^{2}=\frac{\mu_{2} l}{2c} \Delta^{2}$
Where $l$ → The length of the fibre.
9. Pulse dispersion in multimode step-index fibre is large. Pulse dispersion in a graded-index fibre is small.
10. A good quality step-index fibre may have a bandwidth of $50 MHz km$ The equivalent graded-index fibre can have $200$, $400$, or $600 MHz km$ bandwidth.

Popular Posts

Study-Material













  • Classical world and Quantum world

  • Inadequacy of classical mechanics

  • Drawbacks of Old Quantum Theory

  • Bohr's Quantization Condition

  • Energy distribution spectrum of black body radiation

  • Energy distribution laws of black body radiation

  • The Compton Effect | Experiment Setup | Theory | Theoretical Expression | Limitation | Recoil Electron

  • Davisson and Germer's Experiment and Verification of the de-Broglie Relation

  • Significance of Compton's Effect

  • Assumptions of Planck’s Radiation Law

  • Derivation of Planck's Radiation Law

  • de-Broglie Concept of Matter wave

  • Definition and derivation of the phase velocity and group velocity of wave

  • Relation between group velocity and phase velocity ($V_{g}=V_{p}-\lambda \frac{dV_{p}}{d\lambda }$)

  • Group velocity is equal to particle velocity($V_{g}=v$)

  • Product of phase velocity and group velocity is equal to square of speed of light ($V_{p}.V_{g}=c^{2}$)

  • Heisenberg uncertainty principle

  • Generation of wave function for a free particle

  • Physical interpretation of the wave function

  • Derivation of time dependent Schrodinger wave equation

  • Derivation of time independent Schrodinger wave equation

  • Eigen Function, Eigen Values and Eigen Vectors

  • Postulate of wave mechanics or Quantum Mechanics

  • Quantum Mechanical Operators

  • Normalized and Orthogonal wave function

  • Particle in one dimensional box (Infinite Potential Well)

  • Minimum Energy Or Zero Point Energy of a Particle in an one dimensional potential box or Infinite Well

  • Normalization of the wave function of a particle in one dimension box or infinite potential well

  • Orthogonality of the wave functions of a particle in one dimension box or infinite potential well

  • Eigen value of the momentum of a particle in one dimension box or infinite potential well

  • Schrodinger's equation for the complex conjugate waves function

  • Probability Current Density for a free particle in Quantum Mechanics

  • Ehrenfest's Theorem and Derivation

  • Momentum wave function for a free particle

  • Wave function of a particle in free state

  • One dimensional Step Potential Barrier for a Particle

























  • Blog Archive