### Wheatstone's Bridge

It is an arrangement of four resistance used to determine one of this resistance quickly and accurately in terms of the remaining three resistance.

Objective: To find the unknown resistance with the help of the remaining three resistance.

Principle of Wheatstone Bridge: The principle of Wheatstone bridge is based on the principle of Kirchhoff's Law.

Construction: A Wheatstone bridge consists of four resistance $P$,$Q$,$R$, and $S$. This resistance is connected to form quadrilateral $ABCD$. A battery of EMF $E$ is connected between point $A$ and $C$ and a sensitive galvanometer is connected between point $B$ and $D$ Which is shown in the figure below.
 Diagram of Wheatstone's Bridge
Working: To find the unknown resistance $S$, The resistance $R$ is to be adjusted like there is no deflection in the galvanometer. which means that there is not any flow of current in the arm $BD$. This condition is called "Balanced Wheatstone bridge" i.e

$\frac{P}{Q}=\frac{R}{S}$

Derivation of Balanced Condition of Wheatstone's Bridge: In accordance with Kirchhoff's first law, the currents through various branches are shown in the figure above.

For Close Loop $ABDA$

$0=P \: I_{1} - R \: I_{2} +G \: I_{g} \qquad(1)$

For Close Loop $CBDC$

$0=Q \left( I_{1} - I_{g} \right) -S \left( I_{2} + I_{g} \right) - G\: I_{g} \qquad(2)$

For Balanced Wheatstone Bridge: $I_{g}=0$

SO from equation $(1)$ and equation $(2)$

$0=P \: I_{1} - R \: I_{2}$

$P \: I_{1} = R \: I_{2} \qquad(3)$

$0=Q I_{1} -S I_{2}$

$Q I_{1} = S I_{2} \qquad(4)$

Now divide the equation $(4)$ and equation $(3)$, then we get

$\frac{P}{Q}=\frac{R}{S}$

### Numerical Aperture and Acceptance Angle of the Optical Fibre

Angle of Acceptance → If incident angle of light on the core for which the incident angle on the core-cladding interface equals the critical angle then incident angle of light on the core is called the "Angle of Acceptance. Transmission of light when the incident angle is equal to the acceptance angle If the incident angle is greater than the acceptance angle i.e. $\theta_{i}>\theta_{0}$ then the angle of incidence on the core-cladding interface will be less than the critical angle due to which part of the incident light is transmitted into cladding as shown in the figure below Transmission of light when the incident angle is greater than the acceptance angle If the incident angle is less than the acceptance angle i.e. $\theta_{i}<\theta_{0}$ then the angle of incidence on the core-cladding interface will be greater than the critical angle for which total internal reflection takes place inside the core. As shown in the figure below Transmission of lig

### Fraunhofer diffraction due to a single slit

Let $S$ be a point monochromatic source of light of wavelength $\lambda$ placed at the focus of collimating lens $L_{1}$. The light beam is incident normally from $S$ on a narrow slit $AB$ of width $e$ and is diffracted from it. The diffracted beam is focused at the screen $XY$ by another converging lens $L_{2}$. The diffraction pattern having a central bright band followed by an alternative dark and bright band of decreasing intensity on both sides is obtained. Analytical Explanation: The light from the source $S$ is incident as a plane wavefront on the slit $AB$. According to Huygens's wave theory, every point in $AB$ sends out secondary waves in all directions. The undeviated ray from $AB$ is focused at $C$ on the screen by the lens $L_{2}$ while the rays diffracted through an angle $\theta$ are focussed at point $p$ on the screen. The rays from the ends $A$ and $B$ reach $C$ in the same phase and hence the intensity is maximum. Fraunhofer diffraction due to

### Electromagnetic wave equation in free space

Maxwell's Equations: Maxwell's equation of the electromagnetic wave is a collection of four equations i.e. Gauss's law of electrostatic, Gauss's law of magnetism, Faraday's law of electromotive force, and Ampere's Circuital law. Maxwell converted the integral form of these equations into the differential form of the equations. The differential form of these equations is known as Maxwell's equations. $\overrightarrow{\nabla}. \overrightarrow{E}= \frac{\rho}{\epsilon_{0}}$ $\overrightarrow{\nabla}. \overrightarrow{B}=0$ $\overrightarrow{\nabla} \times \overrightarrow{E}=-\frac{\partial \overrightarrow{B}}{\partial t}$ $\overrightarrow{\nabla} \times \overrightarrow{B}= \mu \overrightarrow{J}$ Modified Form: $\overrightarrow{\nabla} \times \overrightarrow{B}= \mu \left(\overrightarrow{J}+ \epsilon \frac{ \partial \overrightarrow{E}}{\partial t} \right)$ For free space