If the xcoordinate of the position of a particle is known to an accuracy of $\delta x$, then the xcomponent of momentum cannot be determined to an accuracy better than $\Delta P_{x}\approx \frac{\hbar }{\Delta x}$.
$\Delta P_{x}. \Delta x\approx \hbar$
The above inequality must be satisfied
$\Delta P_{x}. \Delta x\geqslant \hbar$

Where $\hbar $  Planck’s Constant
This is the Uncertainty principle with macroscopic objects.
Exact statement of the Uncertainty principle →
The product of the uncertainties in determining the position and momentum of the particle can never be smaller than the number of the order $\frac{\hbar }{2}$.
$\Delta P_{x}. \Delta x\geqslant \frac{\hbar}{2}$

Where $\delta x$ and $\delta P $ are defined as the root mean square deviation from their mean values.
The Uncertainty principle can also describe by the following formula →
$\Delta x.\Delta p_{x}\approx \frac{\hbar}{2}$

$\Delta x.\Delta p_{x}\geqslant \frac{\hbar}{2}$

$\Delta x.\Delta p_{x}\geqslant \frac{h}{4\pi }$

Expression for $y$ and $z$ component →
$\Delta y.\Delta p_{y}\geqslant \frac{h}{4\pi }$

$\Delta z.\Delta p_{z}\geqslant \frac{h}{4\pi }$

The uncertainty relation between energy and time →
$\Delta E.\Delta t\geqslant \frac{h}{4\pi }$

$\Delta E.\Delta t\geqslant \frac{\hbar }{2 }$

The uncertainty relation between momentum and Angular Position→
$\Delta L.\Delta \theta \geqslant \frac{h }{4\pi }$

$\Delta L.\Delta \theta \geqslant \frac{\hbar}{2 }$
