Momentum of electromagnetic wave

Derivation of momentum of electromagnetic wave:

Maxwell's had also predicted that electromagnetic waves transport linear momentum in the direction of propagation. Let a particle which has mass $m$ moving with velocity then the momentum of a particle,

$\overrightarrow{P}=m\overrightarrow{v} \qquad(1)$

According to mass-energy relation

$U=mc^{2}$

Here $U$ - Total energy of the particle

$m=\frac{U}{c^{2}} \qquad(2)$

From equation $(1)$ and equation $(2)$

$\overrightarrow{P}=\frac{U}{c^{2}} \overrightarrow{v} \qquad(3)$

If the electromagnetic wave is propagating along the x-axis then

$\overrightarrow{v}=c \hat{i}$

Put this value in the above equation $(3)$

$\overrightarrow{P}=\frac{U}{c} \hat{i} \qquad(4)$

We know that the equation of energy flow in electromagnetic wave

$\overrightarrow{S}= \frac{1}{\mu_{0} c} E^{2} \hat{n}$

Here wave is propagating along x-axis i.e 


$\hat{n}=\hat{i}$

$\overrightarrow{S}= \frac{1}{\mu_{0} c} E^{2} \hat{i} \qquad(5)$

The energy density in plane electromagnetic wave in free space:

$U=\epsilon_{0} E^{2}$

Where $E$ - Magnitude of electric field

$E^{2}=\frac{U}{\epsilon_{0}} \qquad(6)$

Now substitute the value of $E^{2}$ in equation$(5)$

$\overrightarrow{S}= \frac{1}{\mu_{0} c} \frac{U}{\epsilon_{0}} \hat{i} $

$\overrightarrow{S}= \frac{c^{2}}{c} U \hat{i} \qquad (\because \frac{1}{\sqrt{ \mu_{0} \epsilon_{0}}}=c) $

$\overrightarrow{S}= c U \hat{i} $

$U \hat{i}=\frac{\overrightarrow{S}}{c} \qquad(7)$

Now substitute the value of $ U \hat{i} $ in equation $(4)$. Then

$\overrightarrow{P}=\frac{\overrightarrow{S}}{c}$

$\overrightarrow{P}=\frac{(\overrightarrow{E} \times \overrightarrow{B})}{ \mu_{0}c^{2}}$

$\overrightarrow{P}=\epsilon_{0}(\overrightarrow{E} \times \overrightarrow{B})$

This is the equation of "Momentum of electromagnetic wave"

Popular Posts

Study-Material













  • Classical world and Quantum world

  • Inadequacy of classical mechanics

  • Drawbacks of Old Quantum Theory

  • Bohr's Quantization Condition

  • Energy distribution spectrum of black body radiation

  • Energy distribution laws of black body radiation

  • The Compton Effect | Experiment Setup | Theory | Theoretical Expression | Limitation | Recoil Electron

  • Davisson and Germer's Experiment and Verification of the de-Broglie Relation

  • Significance of Compton's Effect

  • Assumptions of Planck’s Radiation Law

  • Derivation of Planck's Radiation Law

  • de-Broglie Concept of Matter wave

  • Definition and derivation of the phase velocity and group velocity of wave

  • Relation between group velocity and phase velocity ($V_{g}=V_{p}-\lambda \frac{dV_{p}}{d\lambda }$)

  • Group velocity is equal to particle velocity($V_{g}=v$)

  • Product of phase velocity and group velocity is equal to square of speed of light ($V_{p}.V_{g}=c^{2}$)

  • Heisenberg uncertainty principle

  • Generation of wave function for a free particle

  • Physical interpretation of the wave function

  • Derivation of time dependent Schrodinger wave equation

  • Derivation of time independent Schrodinger wave equation

  • Eigen Function, Eigen Values and Eigen Vectors

  • Postulate of wave mechanics or Quantum Mechanics

  • Quantum Mechanical Operators

  • Normalized and Orthogonal wave function

  • Particle in one dimensional box (Infinite Potential Well)

  • Minimum Energy Or Zero Point Energy of a Particle in an one dimensional potential box or Infinite Well

  • Normalization of the wave function of a particle in one dimension box or infinite potential well

  • Orthogonality of the wave functions of a particle in one dimension box or infinite potential well

  • Eigen value of the momentum of a particle in one dimension box or infinite potential well

  • Schrodinger's equation for the complex conjugate waves function

  • Probability Current Density for a free particle in Quantum Mechanics

  • Ehrenfest's Theorem and Derivation

  • Momentum wave function for a free particle

  • Wave function of a particle in free state

  • One dimensional Step Potential Barrier for a Particle

























  • Blog Archive