Force on current carrying conductor in uniform magnetic field

Derivation of force on current-carrying conductor in uniform magnetic field:

Let us consider:
  • The length of the conductor - $l$

  • The cross-section area of the current carrying conductor - $A$

  • The current flow in a conductor- $i$

  • The drift or average velocity of the free electrons - $v_{d}$

  • The current-carrying conductor is placed in a magnetic field - $B$

  • The total number of free electrons in the current carrying conductor - $N$

  • Force on current carrying conductor in Uniform magnetic field
    Force on current carrying conductor in the uniform magnetic field
    Now the magnetic force on one free electron in a conductor -

    $F'= ev_{d}B sin\theta \qquad(1)$

    The net force on the conductor is due to all the free electrons present in the conductor

    $F=N\: F' \qquad(2)$

    Let $N$ is the number of free electrons per unit volume of conductor. So the total number of free electrons in the $Al$ volume of the conductor will be

    $N=nAl \qquad(3)$

    Now substitute the value of $N$ and $F'$ from above equation $(1)$ and equation $(3)$ in equation $(2)$

    $F=neAlv_{d}B\: sin\theta$

    Where $i=neAv_{d}$

    So from the above equation

    $F=ilB \: sin\theta $

    The Vector Form of the above equation:

    $F=i \left(\overrightarrow{l} \times \overrightarrow{B} \right) $

    Alternative Method

    Let us consider, a conductor of length of $l$ in which $i$ current carrying is flowing and placed in magnetic field $B$ at an angle $\theta$. If $i$ current is flowing in the conductor then magnetic force on the conductor depends upon

    1) The magnetic force is directly proportional current.

    $F \propto i \qquad(1)$

    2.) The magnetic force is directly proportional to the length of the conductor.

    $F \propto l \qquad(2)$

    3.) The magnetic force is directly proportional to the magnetic field.

    $F \propto B \qquad(3)$

    4.) The magnetic force is directly proportional to the $sin \theta$. Here $\theta$ is the angle between the length of the current element and the magnetic field.

    $F \propto sin \theta \qquad(4)$

    from equation $(1)$, $(2)$, $(3)$, and equation $(4)$

    $F \propto i \: l \: B sin\theta$

    $F = k \: i \: l \: B sin\theta$

    Here $k$ is constant which has value $1$, then above equation

    $F = i\: l \: b \: sin\theta$

    Vector form of the above equation:

    $F = i \left( \overrightarrow{l} \times \overrightarrow{B} \right)$

    Popular Posts

    Study-Material













  • Classical world and Quantum world

  • Inadequacy of classical mechanics

  • Drawbacks of Old Quantum Theory

  • Bohr's Quantization Condition

  • Energy distribution spectrum of black body radiation

  • Energy distribution laws of black body radiation

  • The Compton Effect | Experiment Setup | Theory | Theoretical Expression | Limitation | Recoil Electron

  • Davisson and Germer's Experiment and Verification of the de-Broglie Relation

  • Significance of Compton's Effect

  • Assumptions of Planck’s Radiation Law

  • Derivation of Planck's Radiation Law

  • de-Broglie Concept of Matter wave

  • Definition and derivation of the phase velocity and group velocity of wave

  • Relation between group velocity and phase velocity ($V_{g}=V_{p}-\lambda \frac{dV_{p}}{d\lambda }$)

  • Group velocity is equal to particle velocity($V_{g}=v$)

  • Product of phase velocity and group velocity is equal to square of speed of light ($V_{p}.V_{g}=c^{2}$)

  • Heisenberg uncertainty principle

  • Generation of wave function for a free particle

  • Physical interpretation of the wave function

  • Derivation of time dependent Schrodinger wave equation

  • Derivation of time independent Schrodinger wave equation

  • Eigen Function, Eigen Values and Eigen Vectors

  • Postulate of wave mechanics or Quantum Mechanics

  • Quantum Mechanical Operators

  • Normalized and Orthogonal wave function

  • Particle in one dimensional box (Infinite Potential Well)

  • Minimum Energy Or Zero Point Energy of a Particle in an one dimensional potential box or Infinite Well

  • Normalization of the wave function of a particle in one dimension box or infinite potential well

  • Orthogonality of the wave functions of a particle in one dimension box or infinite potential well

  • Eigen value of the momentum of a particle in one dimension box or infinite potential well

  • Schrodinger's equation for the complex conjugate waves function

  • Probability Current Density for a free particle in Quantum Mechanics

  • Ehrenfest's Theorem and Derivation

  • Momentum wave function for a free particle

  • Wave function of a particle in free state

  • One dimensional Step Potential Barrier for a Particle

























  • Blog Archive