Equation of continuity of electromagnetic wave

Definition:

The mathematical representation of the law of conservation of charge in differential form is called the "continuity equation".

Mathematical representation of Equation of continuity:

If $\overrightarrow{J}$ is the current density of a closed surface $\overrightarrow{S}$ then the current through a closed surface is

$i=\oint_{S} \overrightarrow{J}. \overrightarrow{dS} \qquad(1)$

Let $V$ be the volume enclosed by the surface $S$. So the total charge in this volume-

$q=\oint_{V} \rho. dV \qquad(2)$

By the law of conservation of charge i.e. "Charge can neither be created nor destroyed". If some charge flows out from the volume per unit time giving rise to current density, the charge in the volume decreases at the same rate. So the current

$i=-\frac{\partial q}{\partial t}$

$i=-\frac{\partial}{\partial t} (\oint_{V} \rho. dV) \qquad (from \: equation(2) \: )$

$i=-\oint_{V} \frac{\partial \rho}{\partial t} dV \qquad(3)$

from equation $(1)$ and equation $(3)$

$\oint_{S} \overrightarrow{J}. \overrightarrow{dS}= -\oint_{V} \frac{\partial \rho}{\partial t} dV \qquad(4)$

According to Gauss's divergence theorem-

$\oint_{S} \overrightarrow{J}. \overrightarrow{dS}= \oint_{V} (\overrightarrow{\nabla}. \overrightarrow{J}) dV \qquad(5)$

From equation $(4)$ and equation $(5)$

$\oint_{V} (\overrightarrow{\nabla}. \overrightarrow{J}) dV = -\oint_{V} \frac{\partial \rho}{\partial t} dV$

$\oint_{V} (\overrightarrow{\nabla}. \overrightarrow{J}) dV + \oint_{V} \frac{\partial \rho}{\partial t} dV =0 $

$\oint_{V} [(\overrightarrow{\nabla}. \overrightarrow{J}) + \frac{\partial \rho}{\partial t}] dV =0 $

$\overrightarrow{\nabla}. \overrightarrow{J} + \frac{\partial \rho}{\partial t} =0 $

This equation is known as the equation of continuity and it is based on the conservation of charge.

For the study state $\frac{\partial{\rho}}{\partial{t}}=0$

$\overrightarrow{\nabla}. \overrightarrow{J}=0$

This means that in the steady state, there is no source or sink of current.

Popular Posts

Study-Material













  • Classical world and Quantum world

  • Inadequacy of classical mechanics

  • Drawbacks of Old Quantum Theory

  • Bohr's Quantization Condition

  • Energy distribution spectrum of black body radiation

  • Energy distribution laws of black body radiation

  • The Compton Effect | Experiment Setup | Theory | Theoretical Expression | Limitation | Recoil Electron

  • Davisson and Germer's Experiment and Verification of the de-Broglie Relation

  • Significance of Compton's Effect

  • Assumptions of Planck’s Radiation Law

  • Derivation of Planck's Radiation Law

  • de-Broglie Concept of Matter wave

  • Definition and derivation of the phase velocity and group velocity of wave

  • Relation between group velocity and phase velocity ($V_{g}=V_{p}-\lambda \frac{dV_{p}}{d\lambda }$)

  • Group velocity is equal to particle velocity($V_{g}=v$)

  • Product of phase velocity and group velocity is equal to square of speed of light ($V_{p}.V_{g}=c^{2}$)

  • Heisenberg uncertainty principle

  • Generation of wave function for a free particle

  • Physical interpretation of the wave function

  • Derivation of time dependent Schrodinger wave equation

  • Derivation of time independent Schrodinger wave equation

  • Eigen Function, Eigen Values and Eigen Vectors

  • Postulate of wave mechanics or Quantum Mechanics

  • Quantum Mechanical Operators

  • Normalized and Orthogonal wave function

  • Particle in one dimensional box (Infinite Potential Well)

  • Minimum Energy Or Zero Point Energy of a Particle in an one dimensional potential box or Infinite Well

  • Normalization of the wave function of a particle in one dimension box or infinite potential well

  • Orthogonality of the wave functions of a particle in one dimension box or infinite potential well

  • Eigen value of the momentum of a particle in one dimension box or infinite potential well

  • Schrodinger's equation for the complex conjugate waves function

  • Probability Current Density for a free particle in Quantum Mechanics

  • Ehrenfest's Theorem and Derivation

  • Momentum wave function for a free particle

  • Wave function of a particle in free state

  • One dimensional Step Potential Barrier for a Particle

























  • Blog Archive