### Electric Potential and Derivation of electric potential at a point due to point charged particle

Electric Potential:

When a test-charged particle is brought from infinity to a point in the electric field then the work done per unit test charge particle is called electric potential. It is represented by $V$. It is a scalar quantity.

Let's consider a test-charged particle $q_{0}$ bring from infinity to at a point $P$ in the electric field. If the work done by test charged particle is $W$ then electric potential →

$V=\frac{W}{q_{0}}$

Unit of Electric Potential: $Joul/Coulomb$  OR  $N-m/Ampere-sec$

In MKS: $Kg-m^{2}-Ampere^{-1}-sec^{-3}$

Dimension of Electric potential: $[ML^{2}A^{-1}T^{-3}]$

The electric potential at a point due to point charged particle:

Let us consider, a source point charge $+q$ is placed in air and vacuum at point $O$.Let's take a point $P$ at distance $r$ from the source point charged particle. Here the test-charged particle $+q_{0}$ is brought from infinity to point $P$.If the test-charged particle moves a very small distance $dx$ from point $A$ to $B$ against the electrostatic force. So electrostatic force at point $A$ which is placed at a distance $x$ from point $O$ →

$F=\frac{1}{4\pi\epsilon{0}} \frac{qq_{0}}{x^{2}} \qquad(1)$
 Electric potential due to point charge
The work is done against the electrostatic force $\overrightarrow{F}$ to move small distance $dx$ from point $A$ to Point $B$

$dW=\overrightarrow{F}\: \overrightarrow{dx}$

$dW=F\: dx \: cos 180^{\circ}$

Here the angle between the electrostatic force and displacement is $180^{\circ}$. So work done

$dW=- F\: dx$

$dW=-\frac{1}{4\pi\epsilon{0}} \frac{qq_{0}}{x^{2}}\:dx \qquad \left\{ from\: equation \: (1) \right\}$

The total work is done in moving the charge $q_{0}$ from infinity to the point $P$ will be

$W=-\int_{0}^{W}{dW}$

Here negative sign shows that the work done from infinity to at point $P$ is stored in the form of potential energy between the charges.

$W=-\int_{\infty}^{r}{\frac{1}{4\pi\epsilon{0}} \frac{qq_{0}}{x^{2}}\:dx }$

$W=-\frac{qq_{0}}{4\pi\epsilon{0}} \int_{\infty}^{r}{\frac{dx}{x^{2}} }$

$W=-\frac{qq_{0}}{4\pi\epsilon{0}} \left [\frac{-1}{x} \right ]_{\infty}^{r}$

$W=-\frac{qq_{0}}{4\pi\epsilon{0}} \left [-\frac{1}{r}-\frac{-1}{\infty} \right ]$

$W=\frac{qq_{0}}{4\pi\epsilon{0}} \left [\frac{1}{r} \right ]$

$W=\frac{1}{4\pi\epsilon{0}} \left [\frac{qq_{0}}{r} \right ]$

Hence, the work is done to move a unit test charge from infinity to the point $P$, or the electric potential at point $P$ is →

$V=\frac{W}{q_{0}}$

$V=\frac{1}{4\pi\epsilon{0}} \frac{q}{r}$

### Numerical Aperture and Acceptance Angle of the Optical Fibre

Angle of Acceptance → If incident angle of light on the core for which the incident angle on the core-cladding interface equals the critical angle then incident angle of light on the core is called the "Angle of Acceptance. Transmission of light when the incident angle is equal to the acceptance angle If the incident angle is greater than the acceptance angle i.e. $\theta_{i}>\theta_{0}$ then the angle of incidence on the core-cladding interface will be less than the critical angle due to which part of the incident light is transmitted into cladding as shown in the figure below Transmission of light when the incident angle is greater than the acceptance angle If the incident angle is less than the acceptance angle i.e. $\theta_{i}<\theta_{0}$ then the angle of incidence on the core-cladding interface will be greater than the critical angle for which total internal reflection takes place inside the core. As shown in the figure below Transmission of lig

### Fraunhofer diffraction due to a single slit

Let $S$ be a point monochromatic source of light of wavelength $\lambda$ placed at the focus of collimating lens $L_{1}$. The light beam is incident normally from $S$ on a narrow slit $AB$ of width $e$ and is diffracted from it. The diffracted beam is focused at the screen $XY$ by another converging lens $L_{2}$. The diffraction pattern having a central bright band followed by an alternative dark and bright band of decreasing intensity on both sides is obtained. Analytical Explanation: The light from the source $S$ is incident as a plane wavefront on the slit $AB$. According to Huygens's wave theory, every point in $AB$ sends out secondary waves in all directions. The undeviated ray from $AB$ is focused at $C$ on the screen by the lens $L_{2}$ while the rays diffracted through an angle $\theta$ are focussed at point $p$ on the screen. The rays from the ends $A$ and $B$ reach $C$ in the same phase and hence the intensity is maximum. Fraunhofer diffraction due to

### Electromagnetic wave equation in free space

Maxwell's Equations: Maxwell's equation of the electromagnetic wave is a collection of four equations i.e. Gauss's law of electrostatic, Gauss's law of magnetism, Faraday's law of electromotive force, and Ampere's Circuital law. Maxwell converted the integral form of these equations into the differential form of the equations. The differential form of these equations is known as Maxwell's equations. $\overrightarrow{\nabla}. \overrightarrow{E}= \frac{\rho}{\epsilon_{0}}$ $\overrightarrow{\nabla}. \overrightarrow{B}=0$ $\overrightarrow{\nabla} \times \overrightarrow{E}=-\frac{\partial \overrightarrow{B}}{\partial t}$ $\overrightarrow{\nabla} \times \overrightarrow{B}= \mu \overrightarrow{J}$ Modified Form: $\overrightarrow{\nabla} \times \overrightarrow{B}= \mu \left(\overrightarrow{J}+ \epsilon \frac{ \partial \overrightarrow{E}}{\partial t} \right)$ For free space