Skip to main content

Radiation pressure of electromagnetic wave

When an electromagnetic wave strikes a surface then its momentum changes. the rate of change of momentum is equal to the applied force. this force acting on the unit area of the surface exerts a pressure called radiation pressure$(P_{rad})$.

Let us consider a plane electromagnetic wave incident normally on a perfectly absorbing surface of area $A$ for a time $t$. If energy $U$ is absorbed during this time then momentum $P$ delivered to the surface is given according to Maxwell's prediction by

$P=\frac{U}{C} \qquad(1)$

If $S$ is the energy flow per unit area per unit time i.e. Poynting vector then the energy density

$U=SAt \qquad(2)$

From equation $(1)$ and equation $(2)$

$P=\frac{SAt}{c}$

$P=UAt \qquad (\because U=\frac{S}{c})$

$\frac{P}{t}=UA \qquad (3)$

If average force $(F)$ acting on the surface, is equal to the average rate of change of momentum $(P)$, is delivered to the surface then

$F=\frac{P}{t} \qquad(4)$

Now from equation$(3)$ and equation$(4)$ we get

$F=UA \qquad(5)$

The radiation pressure $(P_{rad})$ exerted on the surface is

$P_{rad}=\frac{F}{A} \qquad(6)$

Now substitute the value of $F$ from equation$(5)$ in equation$(6)$ then we get

$P_{rad}=\frac{UA}{A}$

$P_{rad}=U$

Hence, the radiation pressure exerted by a normally incident play electromagnetic wave on a perfect absorber is equal to the energy density of the wave.

For a perfect reflector or for a perfect reflecting surface, the radiation after reflection has momentum equal in magnitude but opposite in direction to the incident radiation. Then the momentum imparted to the surface will therefore be twice as on perfect absorber i.e.

$P_{rad}=2U$

Comments

Popular Posts

Numerical Aperture and Acceptance Angle of the Optical Fibre

Angle of Acceptance → If incident angle of light on the core for which the incident angle on the core-cladding interface equals the critical angle then incident angle of light on the core is called the "Angle of Acceptance. Transmission of light when the incident angle is equal to the acceptance angle If the incident angle is greater then the acceptance angle i.e. $\theta_{i}>\theta_{0}$ then the angle of incidence on the core-cladding interface will be less than the critical angle due to which part of incident light is transmitted into cladding as shown in the figure below Transmission of light when the incident angle is greater than the acceptance angle If the incident angle is less then the acceptance angle i.e. $\theta_{i}<\theta_{0}$ then the angle of incidence on the core-cladding interface will be greater than the critical angle for which total internal reflection takes place inside the core. As shown in the figure below Transmission of light w

Fraunhofer diffraction due to a single slit

Let $S$ be a point monochromatic source of light of wavelength $\lambda$ placed at the focus of collimating lens $L_{1}$. The light beam is incident normally from $S$ on a narrow slit $AB$ of width $e$ and is diffracted from it. The diffracted beam is focused at the screen $XY$ by another converging lens $L_{2}$. The diffraction pattern having a central bright band followed by an alternative dark and bright band of decreasing intensity on both sides is obtained. Analytical Explanation: The light from the source $S$ is incident as a plane wavefront on the slit $AB$. According to Huygens's wave theory, every point in $AB$ sends out secondary waves in all directions. The undeviated ray from $AB$ is focused at $C$ on the screen by the lens $L_{2}$ while the rays diffracted through an angle $\theta$ are focussed at point $p$ on the screen. The rays from the ends $A$ and $B$ reach $C$ in the same phase and hence the intensity is maximum. Fraunhofer diffraction due to

Particle in one dimensional box (Infinite Potential Well)

Let us consider a particle of mass $m$ that is confined to one-dimensional region $0 \leq x \leq L$ or the particle is restricted to move along the $x$-axis between $x=0$ and $x=L$. Let the particle can move freely in either direction, between $x=0$ and $x=L$. The endpoints of the region behave as ideally reflecting barriers so that the particle can not leave the region. A potential energy function $V(x)$ for this situation is shown in the figure below. Particle in One-Dimensional Box(Infinite Potential Well) The potential energy inside the one -dimensional box can be represented as $\begin{Bmatrix} V(x)=0 &for \: 0\leq x \leq L \\ V(x)=\infty & for \: 0> x > L \\ \end{Bmatrix}$ $\frac{d^{2} \psi(x)}{d x^{2}}+\frac{2m}{\hbar^{2}}(E-V)\psi(x)=0 \qquad(1)$ If the particle is free in a one-dimensional box, Schrodinger's wave equation can be written as: $\frac{d^{2} \psi(x)}{d x^{2}}+\frac{2mE}{\hbar^{2}}\psi(x)=0$ $\frac{d^{2} \psi(x)}{d x