Derivation of electric field intensity due to the uniformly charged wire of infinite length:
Let us consider a uniformly-charged (positively charged) wire of infinite length having a constant linear charge density (that is, a charge per unit length) $\lambda$ coulomb/meter. Let P is a point at a distance $r$ from the wire at which electric field $\overrightarrow{E}$ has to find.
Let us draw a coaxial Gaussian cylindrical surface of length $l$ through point $P$. By symmetry, the magnitude $E$ of the electric field will be the same at all points on this surface and directed radially outward.
Thus, Now take small area elements $dA_{1}$, $dA_{2}$ and $dA_{3}$ on the Gaussian surface as shown in figure below. Therefore, the total electric flux passing through area elements is:
$ \phi_{E}= \oint \overrightarrow{E} \cdot \overrightarrow{dA_{1}} + \oint \overrightarrow{E} \cdot \overrightarrow{dA_{2}} + \oint\overrightarrow{E} \cdot \overrightarrow{dA_{3}}$
$ \phi_{E}= \oint E\: dA_{1} cos\theta_{1} + \oint E\: dA_{2} cos\theta_{2} \\ \qquad + \oint E\: dA_{3} cos\theta_{3}$
The angle between the area element $dA_{1}$, $dA_{2}$ and $dA_{3}$ with electric field are $\theta_{1}= 0^{\circ}$ , $\theta_{2}= 90^{\circ}$, and $\theta_{3}=90^{\circ}$ respectively. So total electric flux
$ \phi_{E}= \oint E\: dA_{1} cos0^{\circ} + \oint E\: dA_{2} cos90^{\circ} \\ \qquad + \oint E\: dA_{3} cos90^{\circ}$
Here $cos \: 0^{\circ}=1$ and $cos \: 90^{\circ}=0$
Hence the above equation can be written as:
$ \phi_{E}= \oint E\:dA_{1} $
The total electric flux passing through the Gaussian surface is
$ \phi_{E}= \oint{E\:dA_{1}} $
$ \phi_{E}= E\:\oint{dA_{1}} $
$ \phi_{E}= E\:\left(2\pi r l \right) \qquad \left\{\because \oint{dA_{1}} =2\pi r l \right\} $
$ \phi_{E}= E\:\left(2\pi r l \right)$
But, By Gaussian's law, The total flux $\phi_{E}$ must be equal to $\frac{q}{\epsilon_{0}}$, where $q$ is the total charge enclosed with the Gaussian surface. so that
$ \frac{q}{\epsilon_{0}}= E\:\left(2\pi r l \right)$
$ E= \frac{q}{2\pi r l \epsilon_{0}}$
For linear charge distribution →
$q=\lambda l$
So substitute this value in the above equation which can be written as
$ E= \frac{\lambda l}{2\pi r l \epsilon_{0}}$
$ E= \frac{\lambda}{2\pi\epsilon_{0} r }$
The vector form of the above equation :
$\overrightarrow{E}= \frac{\lambda}{2\pi\epsilon_{0} r }\widehat{r}$
Where $\widehat{r}$ is a unit vector in the direction of $r$. The direction of $\overrightarrow{E}$ is radially outwards(for positively charged
wire).
Thus, the electric field ($E$) due to the linear charge is inversely proportional to the distance ($r$) from the linear charge and its direction
is outward perpendicular to the linear charge.
Special Note:
A charged cylindrical conductor behaves for external points as the whole charge is distributed along its axis.
Electric field intensity due to point charge by Gauss's Law
Derivation of electric field intensity due to a point charge by Gauss's Law:
Let us consider, a source point charge particle of $+q$ coulomb is placed at point $O$ in space. Let's take a point $P$ on the electric field of the source point charge particle. To find the electric field intensity $\overrightarrow{E}$ at point $P$, first put the test charge particle
$+q_{0}$ on the point $P$ and draw a gaussian surface which passes through the point $P$. After that take a very small area $\overrightarrow{dA}$ around the point $P$. If the distance between the source charge particle and small area $\overrightarrow {dA}$ is $r$ then electric flux passing through the small area $\overrightarrow{dA}$ →
$ d\phi_{E}= \overrightarrow{E} \cdot \overrightarrow{dA}$
$ d\phi_{E}= E\:dA\: cos\theta$
from the figure, the direction between $\overrightarrow{E}$ and $\overrightarrow{dA}$ is parallel to each other i.e. the angle will be $0^{\circ}$. So the above equation can be written as →
$ d\phi_{E}= E\:dA\: cos0^{\circ}$
$ d\phi_{E}= E\:dA $
The electric flux passing through the entire Gaussian surface and be found by closed integration of the above equation →
$ d\phi_{E}= \oint {E\:dA} $
$ d\phi_{E}= E\:\oint {dA} $
$ \phi_{E}= E\left(4\pi r^{2} \right) \qquad \left\{ \because \oint {dA}=4\pi r^{2} \right\}$
According to Gauss's Law → $\phi_{E}= \frac{q}{\epsilon_{0}}$ then above equation can be written as →
$ \frac{q}{\epsilon_{0}}= E \left(4\pi r^{2} \right)$
$ E= \frac{1}{4\pi\epsilon_{0}} \frac{q}{r^{2}}$
The above expression is the electric field intensity due to a point source charged particle.
![]() |
Electric field due to point charge |
Normalization of the wave function of a particle in one dimension box or infinite potential well
Description of Normalization of the wave function of a particle in one dimension box or infinite potential well:
We know that the wave function for the motion of the particle along the x-axis is
$\psi_{n}(x)= A \: sin \left( \frac{n \pi x}{L} \right) \quad \left\{ Region \quad 0 \lt x \lt a \right\}$
$\psi_{n}(x)= 0 \quad \left\{ Region \quad 0 \gt x \gt a \right\}$
The total probability that the particle is somewhere in the box must be unity. Therefore,
$\int_{0}^{L} \left| \psi_{n}(x)\right|^{2}dx =1$
Now substitute the value of the wave function in the above equation. Then
$\int_{0}^{L} \left| A \: sin \left( \frac{n \pi x}{L} \right) \right|^{2}dx =1$
$\int_{0}^{L} A^{2} \: sin^{2} \left( \frac{n \pi x}{L} \right) dx =1$
$ \frac{A^{2}}{2}\int_{0}^{L} \left[ 1- cos \left( \frac{2n \pi x}{L} \right) \right] dx =1$
$ \frac{A^{2}}{2} \left[ x - \left( \frac{L}{2n\pi} \right) sin \left( \frac{2n \pi x}{L} \right) \right]_{0}^{L} =1$
$ \frac{A^{2}}{2} \left[ L - \left( \frac{L}{2n\pi} \right) sin \left( \frac{2n \pi L}{L} \right) \right] =1$
$ \frac{A^{2}}{2} \left[ L - \left( \frac{L}{2n\pi} \right) sin \left( 2n \pi \right) \right] =1$
$ \frac{A^{2}}{2} \left[ L - \left( \frac{L}{2n\pi} \right) sin \left( 2n \pi \right) \right] =1$
$ \frac{A^{2}}{2} \left[ L - 0 \right] =1 \qquad(\because sin2n\pi =0)$
$ \frac{A^{2} L}{2} =1$
$ A= \sqrt{\frac{2}{L}}$
Hence, the normalized wave function
$\psi_{n}(x)=\sqrt{\frac{2}{L}} sin \left( \frac{n \pi x}{L} \right)$
The absolute square $\left| \psi_{n}(x) \right|^{2}$ of the wave function $\psi_{n}(x)$ gives the probability density. Hence
$\left| \psi_{n}(x) \right|^{2} = \frac{2}{L} sin^{2} \left( \frac{n \pi x}{L} \right)$
The wave function for the particle in a box can be viewed in analogy with standing waves on a string. The wave function for a standing wave that has nodes at endpoints is of the form $\psi_{n}(x)= A \: sin \left( \frac{n \pi x}{L} \right)$. The condition for a standing wave can also be expressed in terms of wavelength.
$\lambda_{n}=\frac{2 \pi}{k_{n}}$
$\lambda_{n}=\frac{2 \pi}{\frac{n \pi}{L}} \qquad \left( \because k_{n}=\frac{n \pi}{L} \right)$
$\lambda_{n}=\frac{2 L}{n}$
$L= \frac{n \: \lambda_{n}}{2}$
So,
$L= \frac{\: \lambda_{1}}{2} \qquad \left( for \: n=1 \right)$
$L= \lambda_{2} \qquad \left( for \: n=2 \right)$
$L= \frac{3 \: \lambda_{3}}{2} \qquad \left( for \: n=3 \right)$
$L= 2 \lambda_{4} \qquad \left( for \: n=4 \right)$
Geo structure of wave function $\psi_{n}(x)$ and wave function's density $\left| \psi_{n}(x) \right|^{2}$.
Variation of the wave function and probability of finding the particle in a one-dimensional box:
We know that normalised wave function $\psi_{n}(x)$
$\psi_{n}(x)=\sqrt{\frac{2}{L}} sin \left( \frac{n \pi x}{L} \right)$
The probability density of wave function $\left| \psi_{n}(x) \right|$
$\left| \psi_{n}(x) \right|^{2} = \frac{2}{L} sin^{2} \left( \frac{n \pi x}{L} \right)$
Maximum Condition:
The values of $\psi_{n}(x)$ and $\left| \psi_{n}(x) \right|^{2}$ will be maximum. When
$sin \left( \frac{n \pi x}{L} \right)=1$
$sin \left( \frac{n \pi x}{L} \right )=sin \frac{\left( 2m+1 \right) \pi}{2}$
$ \frac{n \pi x}{L} =\left( 2m+1 \right) \frac{ \pi}{2}$
$ x =\left( 2m+1 \right) \frac{ L}{2n}$
Minima Condition:
The values of $\psi_{n}(x)$ and $\left| \psi_{n}(x) \right|^{2}$ will be minima. When
$sin \left( \frac{n \pi x}{L} \right)=0$
$sin \left( \frac{n \pi x}{L} \right)= \sin \: m\pi$
$ \frac{n \pi x}{L} = \: m\pi$
$x=m\left( \frac{L}{n} \right)$
The electric potential energy of an electric dipole in the uniform electric field
Derivation of the electric potential energy of an electric dipole in the uniform electric field:
Let us consider an electric dipole $AB$, which is made up of two charges $q_1$ and $q_2$, which are placed at a distance of $2l$ in the electric field $E$. So force acting on each charge due to the electric field will be $qE$. If the dipole gets rotated a small-angle $d\theta$ against the torque acting on it in the uniform electric field $E$ then the small work done is
$dW=\tau. d\theta \qquad (1)$
The torque (i.e moment of force) on an electric dipole in a uniform electric field
$ \tau=p.E\:sin\theta$
Now substitute the value of $\tau$ in equation $(1)$. So work done
$ dW=p.E\:sin\theta.d\theta$
If the dipole rotate the angle from $\theta_{1}$ to angle $\theta_{2}$ then workdone
$\int_{W_{1}}^{W_{2}}dW=p.E\int_{\theta_{1}}^{\theta_{2}}sin\theta \: d\theta$
$ W_{2}-W_{1}=p.E\left[-cos\theta \right]_{\theta_{1}}^{\theta_{2}}$
$ \Delta W= p.E \left( cos\theta_{1}-cos\theta_{2} \right)\qquad\qquad (2)$
This work is stored in the form of the electric potential energy of an electric dipole in the electric field. So
$U=\Delta W$
$U=p.E \left( cos\theta_{1}-cos\theta_{2} \right)$
If the electric dipole rotates from $0^{\circ}$ (when the direction of electric dipole moment $p$ is aligned in the direction of the electric field $E$) to an angle $\theta$ in the electric field i.e $\theta_{1}=0^{\circ}$ and $\theta_{2}=\theta$ then the electric potential energy of dipole in a uniform electric field
$U=p.E (1-cos\theta)$
Case-(I) If $\theta=0^{\circ}$ i.e It is stable equilibrium position then
$U_{min}=0$
Case-(II) If $\theta=90^{\circ}$ i.e Position of zero energy then
$U=pE$
Case-(III) If $\theta=180^{\circ}$ i.e It is unstable equilibrium position then
$U_{max}=2pE$
Force of moment on an electric Dipole |
de-Broglie Concept of Matter wave
Louis de-Broglie thought that similar to the dual nature of light, material particles must also possess the dual character of particle and wave. This means that material particles sometimes behave as particle nature and sometimes behave like a wave nature.
According to de-Broglie –
According to Planck’s theory of radiation–
$E=h\nu \qquad(1) $
Where
h – Planck’s constant
$\nu $ - frequency
According to Einstein’s mass-energy relation –
$E=mc^ {2} \qquad (2)$
According to de Broglie's hypothesis equation $ (1)$ and equation $(2)$ can be written as –
$mc^ {2} = h \nu$
$mc^ {2} = \frac{hc}{\lambda }$
$\lambda =\frac{h}{mc}\qquad(3) $
$\lambda =\frac{h}{P}$
Where $P$ –Momentum of Photon
Similarly from equation $(3)$ the expression for matter waves can be written as
Here $P$ is the momentum of the moving particle.
1.) de-Broglie Wavelength in terms of Kinetic Energy
$K=\frac{1}{2} mv ^{2}$
$K=\frac{m^{2}v^{2}}{2m}$
$K=\frac{P^{2}}{2m}$
$P=\sqrt{2mK}$
Now substitute the value of $P$ in equation $ (4)$ so
2.) de-Broglie Wavelength for a Charged particle
The kinetic energy of a charged particle is $K = qv$
Now substitute the value of $K$ in equation$(5)$ so
3.) de-Broglie Wavelength for an Electron
The kinetic energy of an electron
$K=ev$
If the relativistic variation of mass with a velocity of the electron is ignored then $m=m_{0}$ wavelength
So wavelength of de-Broglie wave associated with the electron in non-relativistic cases
4.) de-Broglie wavelength for a particle in Thermal Equilibrium
For a particle of mass $m$ in thermal equilibrium at temperature $T@
$K=\frac{3}{2}kT$
Where $K$ – Boltzmann Constant
$\lambda =\frac{h}{\sqrt{2m.\frac{3}{2}kt}}$
Properties of matter wave →
A moving particle is always associated with a wave, called as de-Broglie matter-wave, whose wavelengths depend upon the mass of the particle and its velocity.
h – Planck’s constant
$\nu $ - frequency
$\lambda=\frac{h}{mv}=\frac{h}{P}\qquad(4)$ |
$\lambda =\frac{h}{\sqrt{2mK}} \qquad (5)$ |
$\lambda =\frac{h}{\sqrt{2mqv}}$ |
$\lambda =\frac{h}{\sqrt{2m_{0}ev}}$ |
$\lambda =\frac{h}{\sqrt{3mKT}}$ |
- Matter waves are generated only if the material's particles are in motion.
- Matter-wave is produced whether the particles are charged or uncharged.
- The velocity of the matter wave is constant; it depends on the velocity of material particles.
- For the velocity of a given particle, the wavelength of matter waves will be shorter for a particle of large mass and vice-versa.
- The matter waves are not electromagnetic waves.
- The speed of matter waves is greater than the speed of light.
According to Einstein’s mass-energy relation$E=mc^{2}$$h\nu = mc^{2}$$\nu =\frac{mc^{2}}{h}$Where $\nu$ is the frequency of matter-wave.We know that the velocity of matter-wave$ u =\nu \lambda $
Substitute the value of $\nu$ in the above equation$u =\frac{mc^{2}}{h}. \lambda $
$u =\frac{mc^{2}}{h} . \frac{h}{mv}$$u =\frac{c^{2}}{v}$ Where $v$ → particle velocity which is less than the velocity of light. - The wave and particle nature of moving bodies can never be observed simultaneously.
Group velocity is equal to particle velocity
Prove that: Group velocity is equal to Particle Velocity
Solution:
We know that group velocity
$V_{g}=\frac{d\omega}{dk}$
$V_{g}=\frac{d(2\pi\nu )}{d(\frac{2\pi }{\lambda })} \qquad \left(k=\frac{2\pi}{\lambda} \right)$
$V_{g}=\frac{d\nu}{d(\frac{1}{\lambda })}$
$\frac{1}{V_{g}}=\frac{d( \frac{1}{\lambda })}{d\nu}\qquad(1)$
We know that the total energy of the particle is equal to the sum of kinetic energy and potential energy. i.e
$E=K+V$
Where
$K$ – kinetic energy
$V$ – Potential energy
$E=\frac{1}{2} mv^{2}+V$
$E-V=\frac{1}{2}\frac{(mv)^2}{m}$
$E-V=\frac{1}{2m }(mv)^2$
$2m(E-V)=(mv)^2$
$mv=\sqrt{2m(E-V)}$
According to de-Broglie wavelength-
$\lambda =\frac{h}{mv}$
$\lambda =\frac{h}{\sqrt{2m(E-V)}}$
$\frac{1}{\lambda} =\frac{\sqrt{2m(E-V)}}{h}\qquad(3)$
Now put the value of $\frac{1}{\lambda }$ in equation$(1)$
$\frac{1}{V_{g}} =\frac{d}{dv}[\frac{{2m(E-V)}^\tfrac{1}{2}}{h}]$
$\frac{1}{V_{g}} =\frac{d}{dv}[\frac{{2m(h\nu -V)}^\tfrac{1}{2}}{h}]$
$\frac{1}{V_{g}} =\frac{1}{2h}[{2m(h\nu -V)}]^{\tfrac{-1}{2}}{2m.h}$
$\frac{1}{V_{g}} =\frac{1}{2h}[{2m(E -V)}]^{\tfrac{-1}{2}}{2m.h} \qquad \left(\because E=h\nu \right) $
$\frac{1}{V_{g}} =\frac{m}{mv}$ {from equation $(2)$}
$V_{g}=V$
Thus, the above equation shows that group velocity is equal to particle velocity.
$V$ – Potential energy
Solution of electromagnetic wave equations in conducting media
The electromagnetic wave equations in conducting media:
For electric field vector:
$ \nabla^{2}.\overrightarrow{E}-\mu \epsilon\frac{\partial^{2} \overrightarrow{E}}{\partial t^{2}} - \sigma \mu \frac{\partial \overrightarrow{E}}{\partial t}=0 \qquad(1)$
For magnetic field vector:
$\nabla^{2}.\overrightarrow{B} - \mu \epsilon \frac{\partial^{2} B}{\partial t^{2}}-\sigma \mu \frac{\partial \overrightarrow{B}}{\partial t}=0 \qquad(2)$
The wave equation of electric field vector:
$\overrightarrow{E}(\overrightarrow{r},t)=E_{\circ} e^{i(\overrightarrow{k}. \overrightarrow{r} - \omega t)} \qquad(3)$
The wave equation of magnetic field vector:
$\overrightarrow{B}(\overrightarrow{r},t)=B_{\circ} e^{i(\overrightarrow{k}. \overrightarrow{r} - \omega t)} \qquad(4)$
Now the solution of electromagnetic wave for electric field vector.
Differentiate with respect to $t$ of equation $(3)$
$\frac{\partial \overrightarrow{E}}{\partial t}=i \omega E_{\circ} e^{i(\overrightarrow{k}. \overrightarrow{r} - \omega t)}$
Again differentiate with respect to $t$ of the above equation:
$\frac{\partial^{2} \overrightarrow{E}}{\partial t^{2}}=i^{2} \omega^{2} E_{\circ} e^{i(\overrightarrow{k}. \overrightarrow{r} - \omega t)}$
$\frac{\partial^{2} \overrightarrow{E}}{\partial^{2} t}=- \omega^{2} \overrightarrow{E}(\overrightarrow{r},t)$
Now substitute the value of the above equation in equation$(1)$
$\nabla^{2} \overrightarrow{E}=-\omega^{2} \mu \epsilon \overrightarrow{E} - i \omega \mu \sigma \overrightarrow{E}$
$\nabla^{2} \overrightarrow{E}=- \left( \omega^{2} \mu \epsilon + i \omega \mu \sigma \right) \overrightarrow{E}$
This is the solution of the electromagnetic wave equation in conducting media for the electric field vector.
Now component form of the above equation:
$(\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}} +\frac{\partial^{2}}{\partial z^{2}})(\hat{i}E_{x}+\hat{j}E_{y}+\hat{k}E_{z}) \\ =- \left( \omega^{2} \mu \epsilon + i \omega \mu \sigma \right)(\hat{i}E_{x}+\hat{j}E_{y}+\hat{k}E_{z}) \qquad(5)$
If the wave is propagating along $z$ direction. Then for uniform-plane electromagnetic waves-
$\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$
$\frac{\partial^{2}}{\partial x^{2}}=\frac{\partial^{2}}{\partial y^{2}}=0$
$E_{z}=0$
Now the equation $(5)$ can be written as:
$\frac{\partial^{2}}{\partial x^{2}} (\hat{i}E_{x}+\hat{j}E_{y}) \\ =- \left( \omega^{2} \mu \epsilon + i \omega \mu \sigma \right)(\hat{i}E_{x}+\hat{j}E_{y})$
Now separate the above equation in $x$ and $y$ components so
$\left.\begin{matrix}
\frac{\partial^{2} E_{x}}{\partial z^{2}}=- \left( \omega^{2} \mu \epsilon + i \omega \mu \sigma \right) E_{x}
\\
\frac{\partial^{2}E_{y}}{\partial z^{2}} =- \left( \omega^{2} \mu \epsilon + i \omega \mu \sigma \right) E_{y}
\end{matrix}\right\} \quad(6)$
The solution of electromagnetic wave for magnetic field vector can find out by following the above method.
Therefore $x$ and $y$ components of the solution of the electromagnetic wave equation for magnetic field vector can be written as. i.e.
$\left.\begin{matrix}
\frac{\partial^{2} B_{x}}{\partial z^{2}}=- \left( \omega^{2} \mu \epsilon + i \omega \mu \sigma \right) B_{x}
\\
\frac{\partial^{2}B_{y}}{\partial z^{2}} =- \left( \omega^{2} \mu \epsilon + i \omega \mu \sigma \right) B_{y}
\end{matrix}\right\} \quad(7)$
In the solution of electromagnetic wave equation $(6)$ and equation $(7)$. The term $\left( \omega^{2} \mu \epsilon + i \omega \mu \sigma \right)$ is equal to $k_{z}^{2}$. It is known as propagation constant $k_{z}$. Then
$k_{z}^{2}=\left( \omega^{2} \mu \epsilon + i \omega \mu \sigma \right) \qquad(8)$
The propagation constant is the complex quantity so
$k_{z}=\alpha+i \beta \qquad(9)$
Now from equation $(8)$ and equation $(9)$
$\left(\alpha+i \beta \right)^{2}=\left( \omega^{2} \mu \epsilon + i \omega \mu \sigma \right)$
$\alpha^{2} - \beta^{2} +2 i \alpha \beta =\left( \omega^{2} \mu \epsilon + i \omega \mu \sigma \right)$
Now separate the real and imaginary terms:
$Real \: Term \rightarrow \alpha^{2} - \beta^{2} = \omega^{2} \mu \epsilon \quad (10)$
$Imaginary \: Term \rightarrow 2 \alpha \beta = \omega \mu \sigma \quad (11)$
On solving the equation $(10)$ and equation $(11)$
$\alpha= \omega \sqrt{\frac{\mu \epsilon}{2}} \left[ 1 + \left\{ 1+ \left( \frac{\sigma}{\epsilon \omega} \right)^{2} \right\}^{1/2} \right]^{1/2} \quad(12)$
$\beta= \omega \sqrt{\frac{\mu \epsilon}{2}} \left[ \left\{ 1+ \left( \frac{\sigma}{\epsilon \omega} \right)^{2} \right\}^{1/2} -1 \right]^{1/2} \quad(13)$
The wave equation $(3)$ of the electric field vector also can be written as:
$\overrightarrow{E}(\overrightarrow{r},t)=E_{\circ} e^{-\beta \overrightarrow{r}}e^i{(\alpha \overrightarrow{r} - \omega t)} \qquad(14)$
The above equation has an additional term $e^{-\beta \overrightarrow{r}}$ compared to the purely harmonic solution.
Where
$\alpha \rightarrow$ Attenuation Constant
$\beta \rightarrow$ Absorption Coefficient and Phase Constant
$\alpha \rightarrow$ Attenuation Constant
$\beta \rightarrow$ Absorption Coefficient and Phase Constant
Electromagnetic Wave Equation in Conducting Media (i.e. Lossy dielectric or Partially Conducting)
Maxwell's Equations:
Maxwell's equation of the electromagnetic wave is a collection of four equations i.e. Gauss's law of electrostatic, Gauss's law of magnetism, Faraday's law of electromotive force, and Ampere's Circuital law. Maxwell converted the integral form of these equations into the differential form of the equations. The differential form of these equations is known as Maxwell's equations.
For Conducting Media:
Current density $(\overrightarrow{J}) = \sigma \overrightarrow{E} $
Volume charge distribution $(\rho)=0$
Permittivity of Conducting Media= $\epsilon$
Permeability of Conducting Media=$\mu$
Now, Maxwell's equation for Conducting Media:
$\overrightarrow{\nabla}. \overrightarrow{E}=0 \qquad(1)$
$\overrightarrow{\nabla}. \overrightarrow{B}=0 \qquad(2)$
$\overrightarrow{\nabla} \times \overrightarrow{E}=-\frac{\partial \overrightarrow{B}}{\partial t} \qquad(3)$
$\overrightarrow{\nabla} \times \overrightarrow{H}= \overrightarrow{J}$
Modified form for Conducting Media:
$\overrightarrow{\nabla} \times \overrightarrow{B}= \mu \overrightarrow{J}+\mu \epsilon \frac{\partial \overrightarrow{E}}{\partial t}$
$\overrightarrow{\nabla} \times \overrightarrow{B}= \mu \sigma \overrightarrow{E}+ \mu \epsilon \frac{\partial \overrightarrow{E}}{\partial t} \qquad(4)$
Now, On solving Maxwell's equation for conducting media i.e perfect dielectric and lossless media, gives the electromagnetic wave equation for conducting media. The electromagnetic wave equation has both an electric field vector and a magnetic field vector. So Maxwell's equation for conducting medium gives two equations for electromagnetic waves i.e. one is for electric field vector($\overrightarrow{E}$) and the second is for magnetic field vector ($\overrightarrow{H}$).
Electromagnetic wave equation for conducting media in terms of $\overrightarrow{E}$:
Now from equation $(3)$
$\overrightarrow{\nabla} \times \overrightarrow{E}=-\frac{\partial \overrightarrow{B}}{\partial t} $
Now take the curl on both sides of the above equation$
$\overrightarrow{\nabla} \times (\overrightarrow{\nabla} \times \overrightarrow{E})=-\overrightarrow{\nabla} \times \frac{\partial \overrightarrow{B}}{\partial t} $
We know that
$\overrightarrow{\nabla}. \overrightarrow{E}=0 $
$\overrightarrow{\nabla}.\overrightarrow{\nabla}=\nabla^{2}$
$\overrightarrow{\nabla} \times \overrightarrow{B}=\sigma \mu \overrightarrow{E} + \mu \epsilon \frac{\partial \overrightarrow{E}}{\partial t} $
Now substitute these values in equation $(5)$. So
$ -\nabla^{2}.\overrightarrow{E}=-\frac{\partial}{\partial t} \left(\sigma \mu \overrightarrow{E} + \mu \epsilon \frac{\partial \overrightarrow{E}}{\partial t} \right)$
$ -\nabla^{2}.\overrightarrow{E}=-\mu \frac{\partial}{\partial t} \left(\sigma \overrightarrow{E} + \epsilon \frac{\partial \overrightarrow{E}}{\partial t} \right)$
$ \nabla^{2}.\overrightarrow{E}=\mu \epsilon \frac{\partial^{2} \overrightarrow{E}}{\partial t^{2}} + \sigma \mu \frac{\partial \overrightarrow{E}}{\partial t} $
$ \nabla^{2}.\overrightarrow{E}-\mu \epsilon \frac{\partial^{2} \overrightarrow{E}}{\partial t^{2}} - \sigma \mu \frac{\partial \overrightarrow{E}}{\partial t}=0 $
The value of $\frac{1}{\sqrt{\mu \epsilon}}= v$. Where $v$ is the speed of the electromagnetic wave in the conducting medium. So the above equation is often written as
$ \nabla^{2}.\overrightarrow{E}-\frac{1}{v^{2}}\frac{\partial^{2} \overrightarrow{E}}{\partial t^{2}} - \sigma \mu \frac{\partial \overrightarrow{E}}{\partial t}=0 $
This is an electromagnetic wave equation for conducting media in terms of electric field vector ($\overrightarrow{E}$).
Electromagnetic wave equation for conducting media in terms of $\overrightarrow{B}$:
Now from MAxwell's equation $(4)$
$\overrightarrow{\nabla} \times \overrightarrow{B}= \mu \sigma \overrightarrow{E}+ \mu \epsilon \frac{\partial \overrightarrow{E}}{\partial t}$
Now take the curl on both sides of the above equation
$\overrightarrow{\nabla} \times (\overrightarrow{\nabla} \times \overrightarrow{B})=\overrightarrow{\nabla} \times \left( \mu \sigma \overrightarrow{E}+ \mu \epsilon \frac{\partial \overrightarrow{E}}{\partial t} \right) $
$(\overrightarrow{\nabla}. \overrightarrow{B}).\overrightarrow{\nabla} - (\overrightarrow{\nabla}. \overrightarrow{\nabla}).\overrightarrow{B} \\ =\overrightarrow{\nabla} \times \sigma \mu \overrightarrow{E}+ \mu \epsilon \left( \overrightarrow{\nabla} \times \frac{\partial \overrightarrow{E}}{\partial t} \right)$
$(\overrightarrow{\nabla}. \overrightarrow{B}).\overrightarrow{\nabla} - (\overrightarrow{\nabla}. \overrightarrow{\nabla}).\overrightarrow{B} \\ =\sigma \mu \left( \overrightarrow{\nabla} \times \overrightarrow{E} \right)+ \mu \epsilon \frac{\partial }{\partial t}\left( \overrightarrow{\nabla} \times \overrightarrow{E} \right) \qquad(6)$
We know that
$\overrightarrow{\nabla}. \overrightarrow{B}=0$
$\overrightarrow{\nabla}.\overrightarrow{\nabla}=\nabla^{2}$
$\overrightarrow{\nabla} \times \overrightarrow{E}= -\frac{\partial \overrightarrow{B}}{\partial t}$
Now substitute these values in equation $(6)$. So
$-\nabla^{2}.\overrightarrow{B}=- \sigma \mu \frac{\partial \overrightarrow{B}}{\partial t} - \mu \epsilon \frac{\partial^{2} B}{\partial t^{2}}$
$\nabla^{2}.\overrightarrow{B}= \sigma \mu \frac{\partial \overrightarrow{B}}{\partial t} + \mu \epsilon \frac{\partial^{2} B}{\partial t^{2}} $
$\nabla^{2}.\overrightarrow{B}-\sigma \mu \frac{\partial \overrightarrow{B}}{\partial t} - \mu \epsilon \frac{\partial^{2} B}{\partial t^{2}}=0 $
The value of $\frac{1}{\sqrt{\mu \epsilon}}= v$. Where $v$ is the speed of the electromagnetic wave in the conducting medium. So the above equation is often written as
$\nabla^{2}.\overrightarrow{B} - \frac{1}{v^{2}} \frac{\partial^{2} B}{\partial t^{2}}-\sigma \mu \frac{\partial \overrightarrow{B}}{\partial t}=0 $
This is an electromagnetic wave equation for conducting media in terms of electric field vector ($\overrightarrow{B}$).
- $\overrightarrow{\nabla}. \overrightarrow{E}= \frac{\rho}{\epsilon_{0}}$
- $\overrightarrow{\nabla}. \overrightarrow{B}=0$
- $\overrightarrow{\nabla} \times \overrightarrow{E}=-\frac{\partial \overrightarrow{B}}{\partial t}$
- $\overrightarrow{\nabla} \times \overrightarrow{B}= \mu \overrightarrow{J}$
Modified form:$\overrightarrow{\nabla} \times \overrightarrow{B}= \mu \overrightarrow{J}+\mu \epsilon \frac{\partial \overrightarrow{E}}{\partial t}$
Volume charge distribution $(\rho)=0$
Permittivity of Conducting Media= $\epsilon$
Permeability of Conducting Media=$\mu$
$\overrightarrow{\nabla}. \overrightarrow{B}=0 \qquad(2)$
$\overrightarrow{\nabla} \times \overrightarrow{E}=-\frac{\partial \overrightarrow{B}}{\partial t} \qquad(3)$
$\overrightarrow{\nabla} \times \overrightarrow{H}= \overrightarrow{J}$
$(\overrightarrow{\nabla}. \overrightarrow{E}).\overrightarrow{\nabla} - (\overrightarrow{\nabla}. \overrightarrow{\nabla}).\overrightarrow{E}=-\frac{\partial}{\partial t} (\overrightarrow{\nabla} \times \overrightarrow{B}) \qquad(5)$
$\overrightarrow{\nabla}.\overrightarrow{\nabla}=\nabla^{2}$
$\overrightarrow{\nabla} \times \overrightarrow{B}=\sigma \mu \overrightarrow{E} + \mu \epsilon \frac{\partial \overrightarrow{E}}{\partial t} $
$\overrightarrow{\nabla}.\overrightarrow{\nabla}=\nabla^{2}$
$\overrightarrow{\nabla} \times \overrightarrow{E}= -\frac{\partial \overrightarrow{B}}{\partial t}$
Bernoulli's Theorem and Derivation of Bernoulli's Equation
Statement of Bernoulli's Theorem:
Derivation of Bernoulli's Theorem Equation:
Let us consider that an incompressible and non-viscous liquid is flowing in streamlined motion through a tube $XY$ of the non-uniform cross-section.
Now Consider:
The Area of cross-section $X$ = $A_{1}$
The Area of cross-section $Y$ = $A_{2}$
The velocity per second (i.e. equal to distance) of fluid at cross-section $X$ = $v_{1}$
The velocity per second (i.e. equal to distance) of fluid at cross-section $Y$ = $v_{2}$
The Pressure of fluid at cross-section $X$ = $P_{1}$
The Pressure of fluid at cross-section $Y$ = $P_{2}$
The height of cross-section $X$ from surface = $h_{1}$
The height of cross-section $Y$ from surface = $h_{2}$
The work done per second by force on the liquid Entering the tube at $X$:
$W_{1}$ = Force $ \times $ Distance covered in one second
Similarly
The work done per second by force on the liquid leaving the tube at $Y$:
$W_{2}= P_{2} \times A_{2} \times v_{2}$
The net work done on the liquid:
$\Delta W=W_{1}-W_{2}$
$\Delta W= P_{1} \times A_{1} \times v_{1} - P_{2} \times A_{2} \times v_{2} \qquad(1)$
Now according to the principle of continuity:
$A_{1} v_{1} = A_{2} v_{2} = \frac{m}{\rho} \qquad(2)$
Now from equation $(1)$ and equation $(2)$
$\Delta W=\left( P_{1} -P_{2} \right) \frac {m}{\rho} \qquad(3)$
The kinetic energy of the fluid entering at $X$ in 1 second
$K_{1}=\frac{1}{2}mv_{1}^{2}$
The kinetic energy of the fluid leaving at $Y$ in 1 second
$K_{2}=\frac{1}{2}mv_{2}^{2}$
Therefore, The increase in kinetic energy
$\Delta K = K_{2}-K_{1}$
Now substitute the value of $K_{1}$ and $K_{2}$ in above equation then
$\Delta K = \frac{1}{2}mv_{2}^{2} - \frac{1}{2}mv_{1}^{2}$
$\Delta K = \frac{1}{2}m \left( v_{2}^{2} - v_{1}^{2} \right) \qquad(4)$
The potential energy of fluid at $X$
$U_{1}= mgh_{1}$
The potential energy of fluid at $Y$
$U_{2}= mgh_{2}$
Therefore, The decrease in potential energy
$\Delta U = U_{1}-U_{2}$
Now substitute the value of $U_{1}$ and $U_{2}$ in above equation then
$\Delta U = mgh_{1} - mgh_{2}$
$\Delta U = mg \left( h_{1} - h_{2} \right) \qquad(5)$
This increase in energy is due to the net work done on the fluid, i.e.
Net Work done = Net increase in energy
Net Work done $(\Delta W)$ = Net increase in Kinetic Energy $(\Delta K)$ - Net decrease in Potential Energy $(\Delta U)$
$\left( P_{1} -P_{2} \right) = \frac{1}{2}\rho \left( v_{2}^{2} - v_{1}^{2} \right) -\rho g \left( h_{1} - h_{2} \right) $
$P_{1} + \frac{1}{2} \rho v_{1}^{2} + \rho g h_{1} = P_{2} + \frac{1}{2}\rho v_{2}^{2} + \rho g h_{2} $
$P + \frac{1}{2} \rho v^{2} + \rho g h = Constant $
This is Bernoulli's theorem equation.
Pressure Head, Velocity Head, and Gravitational Head of a Flowing Fluid:
According to Bernoulli's Theorem equation
$P + \frac{1}{2} \rho v^{2} + \rho g h = Constant $
Now dividing the above equation by $\rho g$, then we get
$\frac{P}{\rho g}+\frac{v^{2}}{2g}+ h = Constant$
Where
$\frac{P}{\rho g}$ = Pressure Head
$\frac{v^{2}}{2g}$ = Velocity Head
$h$ = Gravitational Head
The dimension of each of these three is the dimension of height. The sum of these heads is called the 'Total Head'
Therefore, Bernoulli's theorem may also state as follows:
When the fluid flows in a horizontal plane $(h_{1}=h_{2})$, then Bernoulli's equation
$P_{1} + \frac{1}{2} \rho v_{1}^{2} = P_{2} + \frac{1}{2}\rho v_{2}^{2} $
$\frac{P}{\rho g}+\frac{v^{2}}{2g} = Constant$
When an ideal fluid (i.e incompressible and non-viscous Liquid or Gas) flows in streamlined motion from one place to another, then the total energy per unit volume (i.e Pressure energy + Kinetic Energy + Potential Energy) at each and every of its path is constant.$P+\frac{1}{2}\rho v^{2} + \rho gh= constant$
The Area of cross-section $Y$ = $A_{2}$
The velocity per second (i.e. equal to distance) of fluid at cross-section $X$ = $v_{1}$
The velocity per second (i.e. equal to distance) of fluid at cross-section $Y$ = $v_{2}$
The Pressure of fluid at cross-section $X$ = $P_{1}$
The Pressure of fluid at cross-section $Y$ = $P_{2}$
The height of cross-section $X$ from surface = $h_{1}$
The height of cross-section $Y$ from surface = $h_{2}$
$W_{1}= P_{1} \times A_{1} \times v_{1} \quad \left( Force =Pressure \times Area \right)$
The work done per second by force on the liquid leaving the tube at $Y$:
$\Delta W= P_{1} \times A_{1} \times v_{1} - P_{2} \times A_{2} \times v_{2} \qquad(1)$
$\Delta K = \frac{1}{2}m \left( v_{2}^{2} - v_{1}^{2} \right) \qquad(4)$
$\Delta U = mg \left( h_{1} - h_{2} \right) \qquad(5)$
$\left( P_{1} -P_{2} \right) \frac {m}{\rho} = \frac{1}{2}m \left( v_{2}^{2} - v_{1}^{2} \right) - mg \left( h_{1} - h_{2} \right) $
In streamlined motion of an ideal fluid, the sum of pressure head, velocity head and gravitational head at any point is always constant.
Variation of Mass with Velocity in Relativity
Derivation of variation of mass with velocity:
Consider two systems of reference (frame of reference) $S$ and $S’$. The frame $S’$ is moving with constant velocity $v$ relative to frame $S$.
Let two bodies of masses $m_{1}$ and $m_{2}$ be traveling with velocities $u’$ and $-u’$ parallel to the x-axis in the system $S’$. Suppose the two bodies collide and after collision coalesce into one body.
The principles of conservation of mass and of momentum also hold good in relativity same as in classical mechanics. So now apply the principle of conservation of momentum.
$m_{1}u_{1}+m_{2}u_{2}=\left ( m_{1}+m_{2} \right )v\qquad(1)$
Apply the law of addition of velocities, the velocities $u_{1}$ and $u_{1}$ in the system $S$ corresponding to $u’$ and $-u’$ in frame $S’$ are given by $\rightarrow$
$u_{1}= \frac{u'+v}{1+\frac{u'v}{c^{2}}}\quad or \quad u_{2}= \frac{-u'+v}{1-\frac{u'v}{c^{2}}}\qquad(2)$
Now substitute the value of $u_{1}$ and $u_{1}$ in equation $(1)$
$ m_{1}\frac{u'+v}{\left ( 1+\frac{u'v}{c^{2}} \right )}+m_{2}\frac{-u'+v}{\left ( 1-\frac{u'v}{c^{2}} \right )}=\left ( m_{1}+m_{2} \right )v $
$ m_{1}\left [ \frac{u'+v}{1+\frac{u'v}{c^{2}}}-v \right ]=m_{2}\left [ v- \frac{-u'+v}{1-\frac{u'v}{c^{2}}} \right ]$
$ m_{1}\left [ \frac{u'+v-v-u'\frac{v^{2}}{c^{2}}}{1+u'\frac{v}{c^{2}}} \right ]=m_{2}\left [ \frac{v-u'\frac{v^{2}}{c^{2}}+u'-v}{1- u'\frac{v}{c^{2}}} \right ]$
$ \frac{m_{1}}{m_{2}}= \frac{\left ( 1+u'\frac{v}{c^{2}} \right )}{\left ( 1-u'\frac{v}{c^{2}} \right )}\qquad(3)$
From equation$(2)$
$u_{1}^{2} =\left ( \frac{u'+v}{1+\frac{u'v}{c^{2}}} \right )^{2}$
$ 1-\frac{u_{1}^{2}}{c^{2}}=1- \frac{1}{c^{2}} \left ( \frac{u'+v}{1+\frac{u'v}{c^{2}}} \right )^{2}$
$ 1-\frac{u_{1}^{2}}{c^{2}}= \frac{\left ( 1+\frac{u'v}{c^{2}} \right )^{2}-\left ( \frac{u'+v}{c} \right )^{2}}{\left ( 1+\frac{u'v}{c^{2}} \right )^{2}}$
$ 1-\frac{u_{1}^{2}}{c^{2}}= \frac{\left ( 1-\frac{u'^{2}}{c^{2}} \right )\left ( 1-\frac{v^{2}}{c^{2}} \right )}{\left ( 1+\frac{u'v}{c{2}} \right )}$
$ \left ( 1+\frac{u'v}{c^{2}} \right )^{2}=\frac{\left ( 1-\frac{u'^{2}}{c^{2}} \right )\left ( 1-\frac{v^{2}}{c^{2}} \right )}{1-\frac{u_{1}^{2}}{c^{2}}}$
$ \left ( 1+\frac{u'v}{c^{2}} \right ) =\left [ \frac{\left ( 1-\frac{u'^{2}}{c^{2}} \right )\left ( 1-\frac{v^{2}}{c^{2}} \right )}{1-\frac{u_{1}^{2}}{c^{2}}} \right ]^\frac{1}{2}\qquad(4)$
Similarly, square the velocity of $u_{2}$ and solve the as above, so
$\left ( 1-\frac{u'v}{c^{2}} \right ) =\left [ \frac{\left ( 1-\frac{u'^{2}}{c^{2}} \right )\left ( 1-\frac{v^{2}}{c^{2}} \right )}{1-\frac{u_{2}^{2}}{c^{2}}} \right ]\qquad(5)$
Now substituting the values from equation $(4)$ and equation $(5)$ in equation $(3)$
$\frac{m_{1}}{m_{2}}=\frac{\left ( 1-\frac{u_{2}^{2}}{c^{2}} \right )^{\frac{1}{2}}}{\left ( 1-\frac{u_{1}^{2}}{c^{2}} \right )^{\frac{1}{2}}}$
If the body of mass $m_{2}$ is at rest i.e. $m_{2}=m_{0}$ so velocity of the body in frame-S will be zero. i.e. $u_{2}=0$
Where $m_{0}$ is the rest mass.
$m_{1}=\frac{m_{0}}{\left ( 1-\frac{u_{1}^{2}}{c_{2}} \right )^{\frac{1}{2}}}$
Let $ m_{1}=m$ and $u_{1}=v$ so above equation
$m=\frac{m_{0}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$
This is the generalized formula of variation of mass with velocity.
Popular Posts
-
Angle of Acceptance → "If incident angle of light on the core for which the incident angle on the core-cladding interface equals t...
-
Let $S$ be a point monochromatic source of light of wavelength $\lambda$ placed at the focus of collimating lens $L_{1}$. The light beam is ...
-
Maxwell's Equations: Maxwell's equation of the electromagnetic wave is a collection of four equations i.e. Gauss's law of elec...
-
Derivation of interference of light due to a wedge-shaped thin film: Interference of light due to wedge-shaped thin film The wedge...
-
Let a plane wavefront be incident normally on slit $S_{1}$ and $S_{2}$ of equal $e$ and separated by an opaque distance $d$.The diffracted l...
Study-Material
Categories
Alternating Current Circuits
(10)
Atomic and Molecular Physics
(4)
Biomedical
(1)
Capacitors
(6)
Classical Mechanics
(12)
Current carrying loop in magnetic field
(5)
Current Electricity
(10)
Dielectric Materials
(1)
Electromagnetic Induction
(3)
Electromagnetic Wave Theory
(23)
Electrostatic
(22)
Energy Science and Engineering
(2)
Error and Measurement
(2)
Gravitation
(10)
Heat and Thermodynamics
(3)
Kinematics Theory Of Gases
(1)
Laser System & Application
(15)
Magnetic Effect of Current
(9)
Magnetic Substances
(3)
Mechanical Properties of Fluids
(4)
Nanoscience & Nanotechnology
(4)
Nuclear Physics
(7)
Numerical Problems and Solutions
(1)
Optical Fibre
(5)
Optics
(25)
Photoelectric Effect
(3)
Quantum Mechanics
(33)
Relativity
(8)
Semiconductors
(2)
Superconductors
(1)
Topic wise MCQ
(9)
Units and Dimensions
(1)
Waves
(5)