Momentum of electromagnetic wave

Derivation of momentum of electromagnetic wave:

Maxwell's had also predicted that electromagnetic waves transport linear momentum in the direction of propagation. Let a particle which has mass $m$ moving with velocity then the momentum of a particle,

$\overrightarrow{P}=m\overrightarrow{v} \qquad(1)$

According to mass-energy relation

$U=mc^{2}$

Here $U$ - Total energy of the particle

$m=\frac{U}{c^{2}} \qquad(2)$

From equation $(1)$ and equation $(2)$

$\overrightarrow{P}=\frac{U}{c^{2}} \overrightarrow{v} \qquad(3)$

If the electromagnetic wave is propagating along the x-axis then

$\overrightarrow{v}=c \hat{i}$

Put this value in the above equation $(3)$

$\overrightarrow{P}=\frac{U}{c} \hat{i} \qquad(4)$

We know that the equation of energy flow in electromagnetic wave

$\overrightarrow{S}= \frac{1}{\mu_{0} c} E^{2} \hat{n}$

Here wave is propagating along x-axis i.e 


$\hat{n}=\hat{i}$

$\overrightarrow{S}= \frac{1}{\mu_{0} c} E^{2} \hat{i} \qquad(5)$

The energy density in plane electromagnetic wave in free space:

$U=\epsilon_{0} E^{2}$

Where $E$ - Magnitude of electric field

$E^{2}=\frac{U}{\epsilon_{0}} \qquad(6)$

Now substitute the value of $E^{2}$ in equation$(5)$

$\overrightarrow{S}= \frac{1}{\mu_{0} c} \frac{U}{\epsilon_{0}} \hat{i} $

$\overrightarrow{S}= \frac{c^{2}}{c} U \hat{i} \qquad (\because \frac{1}{\sqrt{ \mu_{0} \epsilon_{0}}}=c) $

$\overrightarrow{S}= c U \hat{i} $

$U \hat{i}=\frac{\overrightarrow{S}}{c} \qquad(7)$

Now substitute the value of $ U \hat{i} $ in equation $(4)$. Then

$\overrightarrow{P}=\frac{\overrightarrow{S}}{c}$

$\overrightarrow{P}=\frac{(\overrightarrow{E} \times \overrightarrow{B})}{ \mu_{0}c^{2}}$

$\overrightarrow{P}=\epsilon_{0}(\overrightarrow{E} \times \overrightarrow{B})$

This is the equation of "Momentum of electromagnetic wave"

Particle in one dimensional box (Infinite Potential Well)

Let us consider a particle of mass $m$ that is confined to one-dimensional region $0 \leq x \leq L$ or the particle is restricted to move along the $x$-axis between $x=0$ and $x=L$. Let the particle can move freely in either direction, between $x=0$ and $x=L$. The endpoints of the region behave as ideally reflecting barriers so that the particle can not leave the region. A potential energy function $V(x)$ for this situation is shown in the figure below.
Particle in One-Dimensional Box

Particle in One-Dimensional Box(Infinite Potential Well)

The potential energy inside the one -dimensional box can be represented as

$\begin{Bmatrix} V(x)=0 &for \: 0\leq x \leq L \\ V(x)=\infty & for \: 0> x > L \\ \end{Bmatrix}$

$\frac{d^{2} \psi(x)}{d x^{2}}+\frac{2m}{\hbar^{2}}(E-V)\psi(x)=0 \qquad(1)$

If the particle is free in a one-dimensional box, Schrodinger's wave equation can be written as:

$\frac{d^{2} \psi(x)}{d x^{2}}+\frac{2mE}{\hbar^{2}}\psi(x)=0$

$\frac{d^{2} \psi(x)}{d x^{2}}+\frac{8 \pi^{2} mE}{h^{2}}\psi(x)=0 \quad (\because \hbar=\frac{h}{2 \pi}) \quad(2)$

$\frac{d^{2} \psi(x)}{d x^{2}}+ k^{2}\psi(x)=0 \quad (\because k^{2}=\frac{8 \pi^{2} mE}{h^{2}}) \quad(3)$

The general solution of the above differential equation $(2)$

$\psi(x)= A sin(kx)+ B cos(kx) \qquad(4)$

The wave function $\psi(x)$ should be zero everywhere outside the box since the probability of finding the particle outside the box is zero. Similarly, the wave function $\psi(x)$ must also be zero at walls of the box because the probability density $[\psi(x)]^{2}$ must be continuous. Thus, the boundary conditions for this problem is that

(i) $\psi(x)=0$ For $x=0$

(ii) $\psi(x)=0$ For $x=L$

Now applying the boundary condition in equation$(4)$ i.e.

(i) At $x=0$ the wave function $\psi(0)=0$

Now we get

$\psi(0)= A sin(k.0)+ B cos(k.0)$

$A sin(k.0)+ B cos(k.0)=0 \qquad (\because \psi(0)= 0)$

$B=0$

Hence substitute the value of $B$ in equation$(4)$ ,

$\psi(L)= A sin(kx) \qquad(5)$

Now applying the second boundary condition:

(ii) At $x=L$ the wave function $\psi(L)=0$, we get

$\psi(x)= A sin(kL) \qquad(6)$

This equation will satisfy only for certain values of $k$, say $k_{n}$. Since $A$ can not be taken zero hence

$sin(k_{n}L)=0 $

$sin(k_{n}L)=sin(n\pi) $

$k_{n}L=n\pi $

$k_{n}=\frac{n\pi}{L} \qquad(7)$

Thus for each allowed values of $k_{n}$ there is a wave function $\psi(x)$ given as, using equation$(5)$ and equation$(7)$

$\psi_{n}(x)=A sin(\frac{n\pi x}{L})$

This is the expression of the wave function or eigen function for a particle in a box.

Now, from equation $(3)$ and equation$(7)$, we get

$k^{2}=\frac{8 \pi^{2} mE}{h^{2}}= (\frac{n \pi}{L})^{2}$

$E=\frac{n^{2} h^{2}}{8mL^{2}}$

This is the expression of energy or eigen value for a particle in a box.

In general, the expression for this energy is written as:

$E_{n}=\frac{n^{2} h^{2}}{8mL^{2}}$

For different values of $n$ energy values can be written as

For $n=1$

$E_{1}=\frac{h^{2}}{8mL^{2}}$

It is known as zero-point energy or ground energy state

For $n=2$

$E_{2}=\frac{2^{2} h^{2}}{8mL^{2}}=2^{2}E_{1}$

For $n=3$

$E_{3}=\frac{3^{2} h^{2}}{8mL^{2}}=3^{2}E_{1}$

For $n=4$

$E_{4}=\frac{4^{2} h^{2}}{8mL^{2}}=4^{2}E_{1}$

So generalized form of the above equation can be written as

$E_{n}=n^{2}E_{1}$

Some of the possible energies for a particle in a box are shown on an energy-level diagram in the figure below.
Possible Energies for a particle in a box

Possible Energies for a particle in a box

The energy levels have a spacing that increases with increasing $n$ and thus the particle in a box can take only certain discrete energy values, called Eigen-values. This means that the energy levels of a particle in a box are quantized but according to classical mechanics, the particle may take any continuous range of energy values between zero and infinity.

Solution of electromagnetic wave equations in free space

The electromagnetic wave equations in free space:

For electric field vector:

$\nabla^{2} \overrightarrow{E}=\frac{1}{c^{2}} \frac{\partial^{2} \overrightarrow{E}}{\partial t^{2}} \qquad(1)$

For magnetic field vector:

$\nabla^{2} \overrightarrow{B}=\frac{1}{c^{2}} \frac{\partial^{2} \overrightarrow{B}}{\partial t^{2}} \qquad(2)$

The wave equation of electric field vector:

$\overrightarrow{E}(\overrightarrow{r},t)=E_{\circ} e^{i(\overrightarrow{k}. \overrightarrow{r} - \omega t)} \qquad(3)$

The wave equation of magnetic field vector:

$\overrightarrow{B}(\overrightarrow{r},t)=B_{\circ} e^{i(\overrightarrow{k}. \overrightarrow{r} - \omega t)} \qquad(4)$

Now the solution of electromagnetic wave for electric field vector.

Differentiate with respect to $t$ of equation $(3)$

$\frac{\partial \overrightarrow{E}}{\partial t}=i \omega E_{\circ} e^{i(\overrightarrow{k}. \overrightarrow{r} - \omega t)}$

Again differentiate with respect to $t$ of the above equation:

$\frac{\partial^{2} \overrightarrow{E}}{\partial t^{2}}=i^{2} \omega^{2} E_{\circ} e^{i(\overrightarrow{k}. \overrightarrow{r} - \omega t)}$

$\frac{\partial^{2} \overrightarrow{E}}{\partial^{2} t}=- \omega^{2} \overrightarrow{E}(\overrightarrow{r},t)$

Now substitute the value of the above equation in equation$(1)$

$\nabla^{2} \overrightarrow{E}=\frac{-\omega^{2}}{c^{2}} \overrightarrow{E}(\overrightarrow{r},t)$

$\nabla^{2} \overrightarrow{E}=-(\frac{\omega}{c})^{2} \overrightarrow{E}(\overrightarrow{r},t)$

$\nabla^{2} \overrightarrow{E}=-k^{2} \overrightarrow{E}(\overrightarrow{r},t) \qquad (\because \frac{\omega}{c}=k )$

Where $k$ - Wave propagation Constant

$\nabla^{2} \overrightarrow{E} + k^{2} \overrightarrow{E}(\overrightarrow{r},t)=0 $

This is the solution of the electromagnetic wave equation in free space for the electric field vector.

Now the component form of the above equation:

$(\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}} +\frac{\partial^{2}}{\partial z^{2}})(\hat{i}E_{x}+\hat{j}E_{y}+\hat{k}E_{z}) \\ =- k^{2}(\hat{i}E_{x}+\hat{j}E_{y}+\hat{k}E_{z}) \qquad(5)$

If the wave is propagating along $z$ direction. Then for uniform-plane electromagnetic waves-

$\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$

$\frac{\partial^{2}}{\partial x^{2}}=\frac{\partial^{2}}{\partial y^{2}}=0$

$E_{z}=0$

Now the equation $(5)$ can be written as:

$\frac{\partial^{2}}{\partial x^{2}}(\hat{i}E_{x}+\hat{j}E_{y})=- k^{2}(\hat{i}E_{x}+\hat{j}E_{y})$

Now separate the above equation in $x$ and $y$ components so

$\frac{\partial^{2} E_{x}}{\partial z^{2}}=- k^{2}E_{x}$

$\frac{\partial^{2}E_{y}}{\partial z^{2}} =- k^{2}E_{y}$

The solution of electromagnetic wave for magnetic field vector can find out by following the above method.

Therefore $x$ and $y$ components of the solution of the electromagnetic wave equation for magnetic field vector can be written as. i.e.

$\frac{\partial^{2} B_{x}}{\partial z^{2}}=- k^{2}B_{x}$

$\frac{\partial^{2}B_{y}}{\partial z^{2}} =- k^{2}B_{y}$

Derivation of time independent Schrodinger wave equation

Time independent Schrodinger wave equation:

We know the time dependent Schrodinger wave equation:

$i \hbar \frac{\partial \psi(x,t)}{\partial t}= -\frac{\hbar^{2}}{2m} \frac{\partial^{2} \psi(x,t)}{\partial x^{2}}+ V(x) \psi(x,t) \qquad(1)$

The wave function $\psi(x,t)$ is the product of space function $\psi(x)$ and time function $\psi(t)$. So

$\psi(x,t)=\psi(x) \psi(t) \qquad (2)$

Now apply the wave function form of equation$(2)$ to time dependent Schrodinger wave equation $(1)$

$i \hbar \psi(x) \frac{d \psi(t)}{d t}= -\frac{\hbar^{2}}{2m} \psi(t) \frac{d^{2} \psi(x)}{d x^{2}}+ V(x) \psi(x) \psi(t) \qquad(3)$

In the above equation $(3)$ ordinary derivatives is used in place of partial derivatives because each of function $\psi(x)$ and $\psi(t)$ depends on only one variable.

Now divide the above equation $(3)$ by $\psi(x)\psi(t)$ so

$i \hbar \frac{1}{\psi(t)} \frac{d \psi(t)}{d t}= -\frac{\hbar^{2}}{2m} \frac{1}{\psi(x)} \frac{d^{2} \psi(x)}{d x^{2}}+ V(x) \qquad(4)$

The above equation is known as the separation of time-independent part and time-independent part of the wave equation. The time-independent part is known as the energy function operator. i.e

$E=i \hbar \frac{1}{\psi(t)} \frac{d \psi(t)}{d t} \qquad(5)$

So from equation $(4)$ and equation$(5)$

$E= -\frac{\hbar^{2}}{2m} \frac{1}{\psi(x)} \frac{d^{2} \psi(x)}{d x^{2}}+ V(x)$

$E \psi(x)= -\frac{\hbar^{2}}{2m} \frac{d^{2} \psi(x)}{d x^{2}}+ V(x) \psi(x)$

$\frac{d^{2} \psi(x)}{d x^{2}}+\frac{2m}{\hbar^{2}}(E-V)\psi(x)=0$

This is time-independent Schrodinger wave equation.

Now for a free particle i.e, there is no force acting on the particle then the potential energy of a particle will be zero i.e. $V(x)=0$. Therefore time independent Schrodinger equation can be written as:

$\frac{d^{2} \psi(x)}{d x^{2}}+\frac{2mE}{\hbar^{2}}\psi(x)=0$

This is time-independent Schrodinger wave equation for a free particle.

Derivation of time dependent Schrodinger's wave equation

Time-dependent Schrodinger wave equation:

Let a particle of mass $m$ is moving along the positive $x$-direction. So the total energy $E$ of the particle is:

$E=\frac{1}{2}mv^{2}+V(x)$

$E=\frac{(mv)^{2}}{2m}+V(x)$

$E=\frac{(P_{x}^{2})^{2}}{2m}+V(x) \qquad(1)$

Since moving particles are associated with the wave function $\psi(x,t)$. So multiply $\psi(x,t)$ on both sides of equation$(1)$

$E\psi(x,t) =\frac{(P_{x}^{2})^{2}}{2m} \psi(x,t)+V(x) \psi(x,t) \qquad(2)$

The wave function $\psi(x,t)$ representing the plane wave associated with the particle is given by:

$\psi(x,t)=A e^{\frac{i}{\hbar}(P_{x}.x-Et)} \qquad(3)$

Differentiate with respect to $x$ the above equation $(3)$

$\frac{\partial \psi(x,t)}{\partial x}= A e^{\frac{i}{\hbar}(P_{x}.x-Et)} (\frac{i}{\hbar})P_{x} \qquad(4)$

Again differentiate the above equation$(4)$

$\frac{\partial^{2} \psi(x,t)}{\partial x^{2}}= A e^{\frac{i}{\hbar}(P_{x}.x-Et)} (\frac{i}{\hbar})^{2}P_{x}^{2}$

$\frac{\partial^{2} \psi(x,t)}{\partial x^{2}}= - \frac{P_{x}^{2}}{\hbar ^{2}} \psi(x,t)$

$P_{x}^{2}\psi(x,t) =- \hbar^{2} \frac{\partial^{2} \psi(x,t)}{\partial x^{2}} \qquad(5)$


Now differentiate the equation $(3)$ with respect to $t$

$\frac{\partial \psi(x,t)}{\partial t}= A e^{\frac{i}{\hbar}(P_{x}.x-Et)} (\frac{i}{\hbar})(-E)$

$\frac{\partial \psi(x,t)}{\partial t}= - (\frac{i}{\hbar})E\psi(x,t)$

$\frac{\partial \psi(x,t)}{\partial t}= - (\frac{i}{\hbar})E\psi(x,t)$

$ E\psi(x,t)= -(\frac{\hbar}{i}) \frac{\partial \psi(x,t)}{\partial t}$

$ E\psi(x,t)= i^{2}(\frac{\hbar}{i}) \frac{\partial \psi(x,t)}{\partial t} \qquad (\because i^{2}=-1)$

$ E\psi(x,t)= i \hbar \frac{\partial \psi(x,t)}{\partial t} \qquad(6)$

Now substitute the value $E\psi(x,t)$ and $P_{x}^{2} \psi(x,t)$ in equation $(2)$. Then

$i \hbar \frac{\partial \psi(x,t)}{\partial t}= -\frac{\hbar^{2}}{2m} \frac{\partial^{2} \psi(x,t)}{\partial x^{2}}+ V(x) \psi(x,t)$

Thus above equation is time-dependent Schrodinger equation. Another form of the above equation can be written as:

$(i \hbar \frac{\partial}{\partial t}) \psi(x,t)= [-\frac{\hbar^{2}}{2m} \frac{\partial^{2}}{\partial x^{2}}+ V(x) ] \psi(x,t)$

Where
$i \hbar \frac{\partial}{\partial t}$→ Energy operator (E)

$-\frac{\hbar^{2}}{2m} \frac{\partial^{2}}{\partial x^{2}}+ V(x)$→ Hamiltonian operator(H)

Now above equation:

$E \psi(x,t)=H \psi(x,t)$

Solution of electromagnetic wave equations in non conducting media

The electromagnetic wave equations in non-conducting media :

For electric field vector:

$\nabla^{2} \overrightarrow{E}=\frac{1}{v^{2}} \frac{\partial^{2} \overrightarrow{E}}{\partial t^{2}} \qquad(1)$

For magnetic field vector:

$\nabla^{2} \overrightarrow{B}=\frac{1}{v^{2}} \frac{\partial^{2} \overrightarrow{B}}{\partial t^{2}} \qquad(2)$

The wave equation of electric field vector:

$\overrightarrow{E}(\overrightarrow{r},t)=E_{\circ} e^{i(\overrightarrow{k}. \overrightarrow{r} - \omega t)} \qquad(3)$

The wave equation of magnetic field vector:

$\overrightarrow{B}(\overrightarrow{r},t)=B_{\circ} e^{i(\overrightarrow{k}. \overrightarrow{r} - \omega t)} \qquad(4)$

Now the solution of electromagnetic wave for electric field vector.

Differentiate with respect to $t$ of equation $(3)$

$\frac{\partial \overrightarrow{E}}{\partial t}=i \omega E_{\circ} e^{i(\overrightarrow{k}. \overrightarrow{r} - \omega t)}$

Again differentiate with respect to $t$ of above equation:

$\frac{\partial^{2} \overrightarrow{E}}{\partial t^{2}}=i^{2} \omega^{2} E_{\circ} e^{i(\overrightarrow{k}. \overrightarrow{r} - \omega t)}$

$\frac{\partial^{2} \overrightarrow{E}}{\partial^{2} t}=- \omega^{2} \overrightarrow{E}(\overrightarrow{r},t)$

Now substitute the value of the above equation in equation$(1)$

$\nabla^{2} \overrightarrow{E}=\frac{-\omega^{2}}{v^{2}} \overrightarrow{E}(\overrightarrow{r},t)$

$\nabla^{2} \overrightarrow{E}=-(\frac{\omega}{v})^{2} \overrightarrow{E}(\overrightarrow{r},t)$

$\nabla^{2} \overrightarrow{E}=-\alpha^{2} \overrightarrow{E}(\overrightarrow{r},t) \qquad (\because \alpha=\frac{\omega}{v} )$

Where $\alpha$ - Wave propagation Constant

$\nabla^{2} \overrightarrow{E} + \alpha^{2} \overrightarrow{E}(\overrightarrow{r},t)=0 $

This is the solution of the electromagnetic wave equation in non-conducting media for the electric field vector.

Now the component form of the above equation:

$(\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}} +\frac{\partial^{2}}{\partial z^{2}})(\hat{i}E_{x}+\hat{j}E_{y}+\hat{k}E_{z}) \\ =- \alpha^{2}(\hat{i}E_{x}+\hat{j}E_{y}+\hat{k}E_{z}) \qquad(5)$

If the wave is propagating along $z$ direction. Then for uniform-plane electromagnetic waves-

$\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$

$\frac{\partial^{2}}{\partial x^{2}}=\frac{\partial^{2}}{\partial y^{2}}=0$

$E_{z}=0$

Now the equation $(5)$ can be written as:

$\frac{\partial^{2}}{\partial x^{2}} (\hat{i}E_{x}+\hat{j}E_{y})=- \alpha^{2}(\hat{i}E_{x}+\hat{j}E_{y})$

Now separate the above equation in $x$ and $y$ components so

$\frac{\partial^{2} E_{x}}{\partial z^{2}}=- \alpha^{2}E_{x}$

$\frac{\partial^{2}E_{y}}{\partial z^{2}} =- \alpha^{2}E_{y}$

The solution of electromagnetic wave for magnetic field vector can find out by following the above method.

Therefore $x$ and $y$ components of the solution of the electromagnetic wave equation for magnetic field vector can be written as. i.e.

$\frac{\partial^{2} B_{x}}{\partial z^{2}}=- \beta^{2}B_{x} \qquad \left( \because \beta=\frac{\omega}{v} \right)$

$\frac{\partial^{2}B_{y}}{\partial z^{2}} =- \beta^{2}B_{y}$

Difference between stable and unstable resonators

Difference between Stable and Unstable Resonators:
  1. The oscillating beam is converged in stable resonator while in unstable resonator is spreads out of the the resonator.

  2. In stable resonator laser output is from the centre of optical axis while in unstable resonator laser output comes from the edge of the output mirror.

  3. The field is confined to the axis in stable resonator while it is not so in unstable resonator.

  4. Stable resonators are used for low power lasers while unstable resonators are used for high power lasers.

  5. In stable resonator these remains risk of breakage of the m  irrors while it is reduced to unstable resonators.

  6. The mode volume is is small in stable resonators while it is large in unstable resonators.

  7. The geometrical losses are large in unstable resonator in comparison to stable resonators.

  8. In unstable resonators better beam quality may be achieved in comparison to stable resonators.

Electromagnetic wave equation in non conducting media (i.e. Perfect dielectric or Lossless media)

Maxwell's Equations: Maxwell's equation of the electromagnetic wave is a collection of four equations i.e. Gauss's law of electrostatic, Gauss's law of magnetism, Faraday's law of electromotive force, and Ampere's Circuital law. Maxwell converted the integral form of these equations into the differential form of the equations. The differential form of these equations is known as Maxwell's equations for free space.

  1. $\overrightarrow{\nabla}. \overrightarrow{E}= \frac{\rho}{\epsilon_{0}}$

  2. $\overrightarrow{\nabla}. \overrightarrow{B}=0$

  3. $\overrightarrow{\nabla} \times \overrightarrow{E}=-\frac{\partial \overrightarrow{B}}{\partial t}$

  4. $\overrightarrow{\nabla} \times \overrightarrow{B}= \mu \overrightarrow{J}$

    Modified Form:

    $\overrightarrow{\nabla} \times \overrightarrow{B}= \mu \left(\overrightarrow{J}+ \epsilon \frac{ \partial \overrightarrow{E}}{\partial t} \right)$

For non-conducting media:

Current density $(\overrightarrow{J})=0$
Volume charge distribution $(\rho) \neq 0 $
Permittivity of non-conducting media= $\epsilon$
Permeability of non-conducting media=$\mu$

Now, Maxwell's equation for non-conducting media:

$\overrightarrow{\nabla}. \overrightarrow{E}=\frac{\rho}{\epsilon} \qquad(1)$
$\overrightarrow{\nabla}. \overrightarrow{B}=0 \qquad(2)$
$\overrightarrow{\nabla} \times \overrightarrow{E}=-\frac{\partial \overrightarrow{B}}{\partial t} \qquad(3)$
$\overrightarrow{\nabla} \times \overrightarrow{B}= 0$

Modified form for non-conducting media:

$\overrightarrow{\nabla} \times \overrightarrow{B}= \mu_{\circ} \epsilon_{\circ} \frac{ \partial \overrightarrow{E}}{\partial t} \qquad(4)$

Now, On solving Maxwell's equation for a non-conducting media i.e perfect dielectric and Lossless media, we get the electromagnetic wave equation for a non-conducting media. The electromagnetic wave equation has both an electric field vector and a magnetic field vector. So Maxwell's equations for non-conducting media give two equations for electromagnetic waves i.e. one is for electric field vector($\overrightarrow{E}$) and the second is for magnetic field vector ($\overrightarrow{B}$).

Electromagnetic wave equation for non-conducting media in terms of $\overrightarrow{E}$:

Now from Maxwell's equation $(3)$

$\overrightarrow{\nabla} \times \overrightarrow{E}=-\frac{\partial \overrightarrow{B}}{\partial t} $

Now take the curl on both sides of the above equation$

$\overrightarrow{\nabla} \times (\overrightarrow{\nabla} \times \overrightarrow{E})=-\overrightarrow{\nabla} \times \frac{\partial \overrightarrow{B}}{\partial t} $

$(\overrightarrow{\nabla}. \overrightarrow{E}).\overrightarrow{\nabla} - (\overrightarrow{\nabla}. \overrightarrow{\nabla}).\overrightarrow{E} \\ =-\frac{\partial}{\partial t} (\overrightarrow{\nabla} \times \overrightarrow{B}) \qquad(5)$

We know that

$\overrightarrow{\nabla}. \overrightarrow{E}=\frac{\rho}{\epsilon}$
$\overrightarrow{\nabla}.\overrightarrow{\nabla}=\nabla^{2}$
$\overrightarrow{\nabla} \times \overrightarrow{B}= \mu \epsilon \frac{\partial \overrightarrow{E}}{\partial t} $

Now substitute these values in equation $(5)$. So

$ \nabla \left(\frac{\rho}{\epsilon}\right) -\nabla^{2}.\overrightarrow{E}=-\frac{\partial}{\partial t} (\mu \epsilon \frac{\partial \overrightarrow{E}}{\partial t})$

For non conducting media, If the volume charge distribution is uniform then the gradient of volume charge density is very small (or almost zero) so neglect the term gradient of volume charge density $(\nabla \rho)$ in above eqaution.
Or
The wave propagation does not contain the charges in most of the cases. Therefore we get

$ -\nabla^{2}.\overrightarrow{E}=-\frac{\partial}{\partial t} (\mu \epsilon \frac{\partial \overrightarrow{E}}{\partial t})$

$\nabla^{2}.\overrightarrow{E}=\mu \epsilon \frac{\partial^{2} \overrightarrow{E}}{\partial t^{2}}$

The value of $\frac{1}{\sqrt{\mu \epsilon}}= v$. Where $v$ is the speed of the wave in the non-conducting media. So the above equation is often written as

$\nabla^{2}.\overrightarrow{E}=\frac{1}{v^{2}} \frac{\partial^{2} \overrightarrow{E}}{\partial t^{2}}$

This is an electromagnetic wave equation for non-conducting media in terms of electric field vector ($\overrightarrow{E}$).


Electromagnetic wave equation for non-conducting media in terms of $\overrightarrow{B}$:

Now from Maxwell's equation $(4)$

$\overrightarrow{\nabla} \times \overrightarrow{B}= \mu_{\circ} \epsilon_{\circ} \frac{ \partial \overrightarrow{E}}{\partial t}$

Now take the curl on both sides of the above equation

$\overrightarrow{\nabla} \times (\overrightarrow{\nabla} \times \overrightarrow{B})=\overrightarrow{\nabla} \times \mu \epsilon \frac{ \partial \overrightarrow{E}}{\partial t} $

$(\overrightarrow{\nabla}. \overrightarrow{B}).\overrightarrow{\nabla} - (\overrightarrow{\nabla}. \overrightarrow{\nabla}).\overrightarrow{B} \\ =\mu \epsilon \frac{\partial}{\partial t} (\overrightarrow{\nabla} \times \overrightarrow{E}) \qquad(6)$

We know that

$\overrightarrow{\nabla}. \overrightarrow{B}=0 $
$\overrightarrow{\nabla}.\overrightarrow{\nabla}=\nabla^{2}$
$\overrightarrow{\nabla} \times \overrightarrow{E}= - \frac{\partial \overrightarrow{B}}{\partial t}$

Now substitute these values in equation $(6)$. So

$ -\nabla^{2}.\overrightarrow{B}=-\mu \epsilon \frac{\partial}{\partial t} (\frac{\partial \overrightarrow{B}}{\partial t})$

$ -\nabla^{2}.\overrightarrow{B}=-\mu \epsilon \frac{\partial^{2} \overrightarrow{B}}{\partial t^{2}} $

$\nabla^{2}.\overrightarrow{B}=\mu \epsilon \frac{\partial^{2} \overrightarrow{B}}{\partial t^{2}}$

The value of $\frac{1}{\sqrt{\mu \epsilon}}= v$. Where $v$ is the speed of the wave in the non-conducting media. So the above equation is often written as

$\nabla^{2}.\overrightarrow{B}=\frac{1}{v^{2}} \frac{\partial^{2} \overrightarrow{B}}{\partial t^{2}}$

This is an electromagnetic wave equation for non-conducting media in terms of electric field vector ($\overrightarrow{B}$).

Electromagnetic wave equation in free space

Maxwell's Equations: Maxwell's equation of the electromagnetic wave is a collection of four equations i.e. Gauss's law of electrostatic, Gauss's law of magnetism, Faraday's law of electromotive force, and Ampere's Circuital law. Maxwell converted the integral form of these equations into the differential form of the equations. The differential form of these equations is known as Maxwell's equations.
  1. $\overrightarrow{\nabla}. \overrightarrow{E}= \frac{\rho}{\epsilon_{0}}$
  2. $\overrightarrow{\nabla}. \overrightarrow{B}=0$
  3. $\overrightarrow{\nabla} \times \overrightarrow{E}=-\frac{\partial \overrightarrow{B}}{\partial t}$
  4. $\overrightarrow{\nabla} \times \overrightarrow{B}= \mu \overrightarrow{J}$

    Modified Form:

    $\overrightarrow{\nabla} \times \overrightarrow{B}= \mu \left(\overrightarrow{J}+ \epsilon \frac{ \partial \overrightarrow{E}}{\partial t} \right)$
For free space:

Current density ($\overrightarrow{J}$) = 0
Volume charge distribution ($\rho$) = 0
Permittivity $\epsilon = \epsilon_{0}$
Permeability $\mu = \mu_{0}$

Now, Maxwell's equation for free space:

$\overrightarrow{\nabla}. \overrightarrow{E}=0 \qquad(1)$
$\overrightarrow{\nabla}. \overrightarrow{B}=0 \qquad(2)$
$\overrightarrow{\nabla} \times \overrightarrow{E}=-\frac{\partial \overrightarrow{B}}{\partial t} \qquad(3)$
$\overrightarrow{\nabla} \times \overrightarrow{B}= 0$

Modified form for free space:

$\overrightarrow{\nabla} \times \overrightarrow{B}= \mu_{\circ} \epsilon_{\circ} \frac{ \partial \overrightarrow{E}}{\partial t} \qquad(4)$

Now, On solving Maxwell's equation for free space we get the electromagnetic wave equation for free space. The electromagnetic wave equation has both an electric field vector and a magnetic field vector. So Maxwell's equations for free space give two-equation for electromagnetic wave i.e. one is for electric field vector($\overrightarrow{E}$) and the second is for magnetic field vector ($\overrightarrow{B}$).

Electromagnetic wave equation for free space in term of $\overrightarrow{E}$:

Now from Maxwell's equation $(3)$ in free space

$\overrightarrow{\nabla} \times \overrightarrow{E}=-\frac{\partial \overrightarrow{B}}{\partial t} $

Now take the curl on both sides of the above equation

$\overrightarrow{\nabla} \times (\overrightarrow{\nabla} \times \overrightarrow{E})=-\overrightarrow{\nabla} \times \frac{\partial \overrightarrow{B}}{\partial t} $

$(\overrightarrow{\nabla}. \overrightarrow{E}).\overrightarrow{\nabla} - (\overrightarrow{\nabla}. \overrightarrow{\nabla}).\overrightarrow{E} \\ =-\frac{\partial}{\partial t} (\overrightarrow{\nabla} \times \overrightarrow{B}) \qquad(5)$

We know that

$\overrightarrow{\nabla}. \overrightarrow{E}=0 \qquad$
$\overrightarrow{\nabla}.\overrightarrow{\nabla}=\nabla^{2}$
$\overrightarrow{\nabla} \times \overrightarrow{B}= \mu_{\circ} \epsilon_{\circ} \frac{ \partial \overrightarrow{E}}{\partial t}$

Now substitute these values in equation $(5)$. So

$ -\nabla^{2}.\overrightarrow{E}=-\frac{\partial}{\partial t} ( \mu_{\circ} \epsilon_{\circ} \frac{ \partial \overrightarrow{E}}{\partial t} )$

$ -\nabla^{2}.\overrightarrow{E}=-\mu_{0} \epsilon_{\circ} \frac{\partial^{2} \overrightarrow{E}}{\partial t^{2}} $

$\nabla^{2}.\overrightarrow{E}=\mu_{0} \epsilon_{0} \frac{\partial^{2} \overrightarrow{E}}{\partial t^{2}}$

The value of $\frac{1}{\sqrt{\mu_{0} \epsilon_{0}}}= c$. Where $c$ is the speed of the wave in free space. So the above equation is often written as

$\nabla^{2}.\overrightarrow{E}=\frac{1}{c^{2}} \frac{\partial^{2} \overrightarrow{E}}{\partial t^{2}}$

This is an electromagnetic wave equation for free space in terms of electric field vector ($\overrightarrow{E}$).

Electromagnetic wave equation for free space in term of $\overrightarrow{B}$:

Now from Maxwell's equation $(4)$

$\overrightarrow{\nabla} \times \overrightarrow{B}= \mu_{\circ} \epsilon_{\circ} \frac{ \partial \overrightarrow{E}}{\partial t}$

Now take the curl on both sides of the above equation

$\overrightarrow{\nabla} \times (\overrightarrow{\nabla} \times \overrightarrow{B})=\overrightarrow{\nabla} \times \mu_{\circ} \epsilon_{\circ} \frac{ \partial \overrightarrow{E}}{\partial t} $

$(\overrightarrow{\nabla}. \overrightarrow{B}).\overrightarrow{\nabla} - (\overrightarrow{\nabla}. \overrightarrow{\nabla}).\overrightarrow{B} \\ =\mu_{\circ} \epsilon_{\circ} \frac{\partial}{\partial t} (\overrightarrow{\nabla} \times \overrightarrow{E}) \qquad(6)$

But for free space:

$\overrightarrow{\nabla}. \overrightarrow{B}=0 \qquad $
$\overrightarrow{\nabla}.\overrightarrow{\nabla}=\nabla^{2}$
$\overrightarrow{\nabla} \times \overrightarrow{E} = - \frac{\partial \overrightarrow{B}}{\partial t} \qquad$

Now substitute these values in equation $(6)$. So

$ -\nabla^{2}\overrightarrow{B}=-\mu_{\circ}\frac{\partial}{\partial t} (\epsilon_{0} \frac{\partial \overrightarrow{B}}{\partial t})$

$ -\nabla^{2}\overrightarrow{B}=- \mu_{\circ} \epsilon_{0} \frac{\partial^{2} \overrightarrow{B}}{\partial t^{2}} $

$\nabla^{2}\overrightarrow{B}=\mu_{0} \epsilon_{0} \frac{\partial^{2} \overrightarrow{B}}{\partial t^{2}}$

The value of $\frac{1}{\sqrt{\mu_{0} \epsilon_{0}}}= c$. Where $c$ is the speed of the wave in free space. So the above equation is often written as

$\nabla^{2}\overrightarrow{B}=\frac{1}{c^{2}} \frac{\partial^{2} \overrightarrow{B}}{\partial t^{2}}$

This is the electromagnetic wave equation for free space in terms of electric field vector ($\overrightarrow{B}$).

Waves: MCQ

Waves: MCQ
You'll have 60 seconds to answer each question.
Time's Up
score:

Test Result

Total Questions:

Attempt:

Correct:

Wrong:

Percentage:

Popular Posts

Study-Material













  • Classical world and Quantum world

  • Inadequacy of classical mechanics

  • Drawbacks of Old Quantum Theory

  • Bohr's Quantization Condition

  • Energy distribution spectrum of black body radiation

  • Energy distribution laws of black body radiation

  • The Compton Effect | Experiment Setup | Theory | Theoretical Expression | Limitation | Recoil Electron

  • Davisson and Germer's Experiment and Verification of the de-Broglie Relation

  • Significance of Compton's Effect

  • Assumptions of Planck’s Radiation Law

  • Derivation of Planck's Radiation Law

  • de-Broglie Concept of Matter wave

  • Definition and derivation of the phase velocity and group velocity of wave

  • Relation between group velocity and phase velocity ($V_{g}=V_{p}-\lambda \frac{dV_{p}}{d\lambda }$)

  • Group velocity is equal to particle velocity($V_{g}=v$)

  • Product of phase velocity and group velocity is equal to square of speed of light ($V_{p}.V_{g}=c^{2}$)

  • Heisenberg uncertainty principle

  • Generation of wave function for a free particle

  • Physical interpretation of the wave function

  • Derivation of time dependent Schrodinger wave equation

  • Derivation of time independent Schrodinger wave equation

  • Eigen Function, Eigen Values and Eigen Vectors

  • Postulate of wave mechanics or Quantum Mechanics

  • Quantum Mechanical Operators

  • Normalized and Orthogonal wave function

  • Particle in one dimensional box (Infinite Potential Well)

  • Minimum Energy Or Zero Point Energy of a Particle in an one dimensional potential box or Infinite Well

  • Normalization of the wave function of a particle in one dimension box or infinite potential well

  • Orthogonality of the wave functions of a particle in one dimension box or infinite potential well

  • Eigen value of the momentum of a particle in one dimension box or infinite potential well

  • Schrodinger's equation for the complex conjugate waves function

  • Probability Current Density for a free particle in Quantum Mechanics

  • Ehrenfest's Theorem and Derivation

  • Momentum wave function for a free particle

  • Wave function of a particle in free state

  • One dimensional Step Potential Barrier for a Particle

























  • Blog Archive