Accelerated Motion: MCQ-1

Accelerated Motion: MCQ-1
You'll have 60 seconds to answer each question.
Time's Up
score:

Test Result

Total Questions:

Attempt:

Correct:

Wrong:

Percentage:

Nuclear Physics: MCQ-2

Nuclear Physics: MCQ-2
You'll have 60 seconds to answer each question.
Time's Up
score:

Test Result

Total Questions:

Attempt:

Correct:

Wrong:

Percentage:

Nuclear Physics: MCQ-1

Nuclear Physics: MCQ-1
You'll have 60 seconds to answer each question.
Time's Up
score:

Test Result

Total Questions:

Attempt:

Correct:

Wrong:

Percentage:

Equation of continuity for current density

We know the equation of continuity is

$\overrightarrow{\nabla}. \overrightarrow{J}+ \frac{\partial \rho}{\partial t}=0 \qquad(1)$

According to Maxwell's first differential equation

$\overrightarrow{\nabla}. \overrightarrow{D}=\rho \qquad(2)$

From equation $(1)$ and equation$(2)$

$\overrightarrow{\nabla}. \overrightarrow{J}+ \frac{\partial }{\partial t}(\overrightarrow{\nabla}. \overrightarrow{D})=0$

$\overrightarrow{\nabla}. (\overrightarrow{J}+ \frac{\partial \overrightarrow{D} }{\partial t}) =0 $ Where the term →
$(\overrightarrow{J}+ \frac{\partial \overrightarrow{D} }{\partial t})$ → solenoidal vector and it is also regarded as total current density for time varying electric field.
$D$ → The displacement vector
$\frac{\partial \overrightarrow{D} }{\partial t}$ → Displacement current density

The above equation is known as the "Equation of continuity for current density".

Equation of continuity of electromagnetic wave

Definition:

The mathematical representation of the law of conservation of charge in differential form is called the "continuity equation".

Mathematical representation of Equation of continuity:

If $\overrightarrow{J}$ is the current density of a closed surface $\overrightarrow{S}$ then the current through a closed surface is

$i=\oint_{S} \overrightarrow{J}. \overrightarrow{dS} \qquad(1)$

Let $V$ be the volume enclosed by the surface $S$. So the total charge in this volume-

$q=\oint_{V} \rho. dV \qquad(2)$

By the law of conservation of charge i.e. "Charge can neither be created nor destroyed". If some charge flows out from the volume per unit time giving rise to current density, the charge in the volume decreases at the same rate. So the current

$i=-\frac{\partial q}{\partial t}$

$i=-\frac{\partial}{\partial t} (\oint_{V} \rho. dV) \qquad (from \: equation(2) \: )$

$i=-\oint_{V} \frac{\partial \rho}{\partial t} dV \qquad(3)$

from equation $(1)$ and equation $(3)$

$\oint_{S} \overrightarrow{J}. \overrightarrow{dS}= -\oint_{V} \frac{\partial \rho}{\partial t} dV \qquad(4)$

According to Gauss's divergence theorem-

$\oint_{S} \overrightarrow{J}. \overrightarrow{dS}= \oint_{V} (\overrightarrow{\nabla}. \overrightarrow{J}) dV \qquad(5)$

From equation $(4)$ and equation $(5)$

$\oint_{V} (\overrightarrow{\nabla}. \overrightarrow{J}) dV = -\oint_{V} \frac{\partial \rho}{\partial t} dV$

$\oint_{V} (\overrightarrow{\nabla}. \overrightarrow{J}) dV + \oint_{V} \frac{\partial \rho}{\partial t} dV =0 $

$\oint_{V} [(\overrightarrow{\nabla}. \overrightarrow{J}) + \frac{\partial \rho}{\partial t}] dV =0 $

$\overrightarrow{\nabla}. \overrightarrow{J} + \frac{\partial \rho}{\partial t} =0 $

This equation is known as the equation of continuity and it is based on the conservation of charge.

For the study state $\frac{\partial{\rho}}{\partial{t}}=0$

$\overrightarrow{\nabla}. \overrightarrow{J}=0$

This means that in the steady state, there is no source or sink of current.

Derivation of Maxwell's forth equation

Maxwell's fourth equation is the differential form of Ampere's circuital law.

$\overrightarrow{\nabla} \times \overrightarrow{H} = \overrightarrow{J} + \frac{\partial{\overrightarrow{D}}}{\partial{t}}$

Derivation:

According to Ampere's circuital law

$\oint_{l} \overrightarrow{B}. \overrightarrow{dl}=\mu_{0} i \qquad(1)$

According to Stroke's theorem-

$\oint_{l} \overrightarrow{B}.\overrightarrow{dl}=\oint_{S} (\overrightarrow{\nabla} \times \overrightarrow{B}). \overrightarrow{dS} \qquad(2)$

From equation$(1)$ and equation$(2)$

$\oint_{S} (\overrightarrow{\nabla} \times \overrightarrow{B}). \overrightarrow{dS} = \mu_{0} i \qquad(3)$

where $i=\oint_{S} \overrightarrow{J}. \overrightarrow{dS} \qquad(4)$

So from equation$(3)$ and equation$(4)$

$\oint_{S} (\overrightarrow{\nabla} \times \overrightarrow{B}). \overrightarrow{dS} = \mu_{0} \oint_{S} \overrightarrow{J}. \overrightarrow{dS}$

$\oint_{S} (\overrightarrow{\nabla} \times \overrightarrow{B}). \overrightarrow{dS} - \mu_{0} \oint_{S} \overrightarrow{J}. \overrightarrow{dS}=0$

$\oint_{S} [(\overrightarrow{\nabla} \times \overrightarrow{B}) - \mu_{0} \overrightarrow{J}]. \overrightarrow{dS}=0$

$(\overrightarrow{\nabla} \times \overrightarrow{B}) - \mu_{0} \overrightarrow{J}=0$

$\overrightarrow{\nabla} \times \overrightarrow{B} = \mu_{0} \overrightarrow{J}$

We know that $\overrightarrow{B}=\mu_{0} \overrightarrow{H}$. So the above equation can be again written as-

$\overrightarrow{\nabla} \times \overrightarrow{H} = \overrightarrow{J}$

Modified Maxwell's fourth equation:

The modified Maxwell's fourth equation is the differential form of the modified Ampere's circuital law.

We know the modified Ampere's circuital law-

$\oint_{l} \overrightarrow{B}. \overrightarrow{dl}=\mu_{0} i + i_{d}$

Where $i_{d}$ - Displacement current

So the derivation of the modified Maxwell equation is similar to the above derivation. Therefore the modified Maxwell's fourth equation can be written as-

$\overrightarrow{\nabla} \times \overrightarrow{H} = \overrightarrow{J} + \overrightarrow{J_{d}} \qquad(1)$

Where $\overrightarrow{J_{d}}$ - Displacement current density

And the value of $\overrightarrow{J_{d}}$ is

$\overrightarrow{J_{d}}=\epsilon_{0} \frac{\partial{\overrightarrow{E}}}{\partial{t}}$

$\overrightarrow{J_{d}}=\frac{\partial{\overrightarrow{D}}}{\partial{t}} \qquad(\because \overrightarrow{D}=\epsilon_{0} \overrightarrow{E})$

Now substitute the value of $\overrightarrow{J_{d}}$ in equation $(1)$, then

$\overrightarrow{\nabla} \times \overrightarrow{H} = \overrightarrow{J} + \frac{\partial{\overrightarrow{D}}}{\partial{t}}$

This is modified by Maxwell's fourth equation.

Derivation of Maxwell's third equation

Maxwell's third equation is the differential form of Faraday's law induction.i.e

$\overrightarrow{\nabla} \times \overrightarrow{E}=- \frac{\partial{\overrightarrow{B}}}{\partial{t}}$

Derivation:

According to Faraday's Induced law-

$e=-\frac{\partial{\phi_{B}}}{\partial{t}} \qquad(1)$

According to Gauss's law of magnetism-

$\phi_{B}=\oint_{S} \overrightarrow{B}.\overrightarrow{dS} \qquad(2)$

Now substitute the value of $\phi_{B}$ in equation $(1)$

$e=-\frac{\partial}{\partial{t}} \oint_{S} \overrightarrow{B}.\overrightarrow{dS}$

$e=-\oint_{S} \frac{\partial{\overrightarrow{B}}}{\partial{t}}.\overrightarrow{dS} \qquad(3)$

The line integral of the electric field around a closed loop is called electromotive force. Thus

$e=\oint_{l} \overrightarrow{E}.\overrightarrow{dl} \qquad(4)$

from equation $(3)$ and $(4)$

$\oint_{l} \overrightarrow{E}.\overrightarrow{dl}=-\oint_{S} \frac{\partial{\overrightarrow{B}}}{\partial{t}}.\overrightarrow{dS} \qquad(5)$

According to Stroke's Theorem-

$\oint_{l} \overrightarrow{E}.\overrightarrow{dl}=\oint_{S} (\overrightarrow{\nabla} \times \overrightarrow{E}).\overrightarrow{dS} \qquad(6)$

from equation $(5)$ and equation $(6)$

$\oint_{S} (\overrightarrow{\nabla} \times \overrightarrow{E}).\overrightarrow{dS}=-\oint_{S} \frac{\partial{\overrightarrow{B}}}{\partial{t}}.\overrightarrow{dS}$

$\oint_{S} [(\overrightarrow{\nabla} \times \overrightarrow{E})+ \frac{\partial{\overrightarrow{B}}}{\partial{t}}].\overrightarrow{dS}=0$

If the surface is arbitrary then-

$(\overrightarrow{\nabla} \times \overrightarrow{E})+ \frac{\partial{\overrightarrow{B}}}{\partial{t}}=0$

$\overrightarrow{\nabla} \times \overrightarrow{E}=- \frac{\partial{\overrightarrow{B}}}{\partial{t}}$

This is Maxwell's third equation.

Derivation of Maxwell's second equation

Maxwell's second equation is the differential form of Gauss's law of magnetism.

As magnetic, monopoles do not exist in magnets and the magnetic field lines form closed loops. There is no source of the magnetic field from which the lines will either only diverge or only converge. Hence the divergence of the magnetic field is zero.

$\overrightarrow{\nabla}. \overrightarrow{B}=0$

Derivation-

According to Gauss's law of magnetism

$\oint_{S} \overrightarrow{B}. \overrightarrow{dS}=0 \qquad(1)$

Now apply the Gauss's divergence theorem-

$\oint_{S} \overrightarrow{B}. \overrightarrow{dS}= \oint_{v} \overrightarrow{\nabla}.\overrightarrow{B}.dV \qquad (2)$

from equation $(1)$ equation $(2)$

$\oint_{v} (\overrightarrow{\nabla}.\overrightarrow{B}).dV =0$

$\overrightarrow{\nabla}.\overrightarrow{B} =0$

Derivation of Maxwell's first equation

Maxwell's first equation is the differential form of Gauss's law of electrostatics.i.e

$\overrightarrow{\nabla}.\overrightarrow{E}= \frac{\rho}{\epsilon_{0}} $

Derivation:

According to Gauss's law for electrostatic-

$\oint_{s} \overrightarrow{E}.\overrightarrow{dS}=\frac{q}{\epsilon_{0}} \qquad(1)$

For continuous charge distribution inside the surface-

$q=\oint_{v}\rho.dV$

Where
$\rho$→Charge density
dV→Small volume

Now substitute the value of $q$ in equation $(1)$ then

$\oint_{s}\overrightarrow{E}.\overrightarrow{dS}=\frac{1}{\epsilon_{0}} \oint_{v}\rho.dV \qquad(2)$

Now according to Gauss's divergence theorem-

$\oint_{s} \overrightarrow{E}.\overrightarrow{dS}= \oint_{v} \overrightarrow{\nabla}.\overrightarrow{E} dV \qquad (3)$

From equation$(2)$ and equation$(3)$, we can write the above equation-

$\oint_{v} \overrightarrow{\nabla}.\overrightarrow{E} dV= \frac{1}{\epsilon_{0}} \oint_{v}\rho.dV $

$\oint_{v} \overrightarrow{\nabla}.\overrightarrow{E} dV- \frac{1}{\epsilon_{0}} \oint_{v}\rho.dV=0 $

$\oint_{v} (\overrightarrow{\nabla}.\overrightarrow{E}- \frac{\rho}{\epsilon_{0}})dV=0 $

On solving the above equation-

$\overrightarrow{\nabla}.\overrightarrow{E}- \frac{\rho}{\epsilon_{0}}=0 $

$\overrightarrow{\nabla}.\overrightarrow{E}= \frac{\rho}{\epsilon_{0}} $

This is Maxwell's first equation.

Conservative force and non conservative force

Conservative force: There are the following points that describe the conservative force-

1.) The conservative force depends only on the position of the particle and does not depend on the path of the particle.

2.) In a conservative force, the kinetic energy of the particle does not change between the positions.
The motion of particle between two position
Let us consider a particle is moving from position $A$ to position $B$ under the conservative force. If the kinetic energy of the particle at position $A$ and $B$ is $K_{i}$ ,$K_{f}$ respectively then for conservative force-

$K_{i}=K_{f}$

3.) In conservative force, the work done by the force in completing one round between any two positions is zero.

According to the work-energy theorem

$W=\Delta{K}$

$W=K_{f}-K_{i} \quad(1)$

For a conservative force, the kinetic energy of the particle does not change between the positions of the particle i.e., $ K_{f}=K_{i}$. So from equation $(1)$

$W=0$

Alternative Method:

The above statement can also be proven by the following method-

The work is done by the conservative force to move a particle from position $A$ to position $B$ = $W_{AB}$.

The work done by the conservative force to move a particle from position $B$ to position $A$ = $W_{BA}$

We know that the kinetic energy of the particle does not change between the positions, so the work done by the force between the positions will be equal and opposite. i.e

$W_{AB}=-W_{BA}$

$W_{AB}+W_{BA}=0$

So, from above, we can conclude that the net work done by force between the two positions in completing one round is zero.
4.) The central force is also known as the conservative force.
5.) The conservative force is always equal to the negative gradient of potential energy.

$\overrightarrow{F}=-\overrightarrow{\nabla}U$

$\overrightarrow{F}= -\frac{dU}{dr}$

Non-conservative force:

1.) The non-conservative force is path-dependent between the two positions and does not depend on the positions of the particle.

2.) The kinetic energy of the particle varies from one position to another due to friction.

3.) For a non-conservative force, the work done by the force in completing one round between two positions is not zero.

4.) This is not a central force.

5.) The non-conservative force does not equal the negative gradient of potential energy.

Popular Posts

Study-Material













  • Classical world and Quantum world

  • Inadequacy of classical mechanics

  • Drawbacks of Old Quantum Theory

  • Bohr's Quantization Condition

  • Energy distribution spectrum of black body radiation

  • Energy distribution laws of black body radiation

  • The Compton Effect | Experiment Setup | Theory | Theoretical Expression | Limitation | Recoil Electron

  • Davisson and Germer's Experiment and Verification of the de-Broglie Relation

  • Significance of Compton's Effect

  • Assumptions of Planck’s Radiation Law

  • Derivation of Planck's Radiation Law

  • de-Broglie Concept of Matter wave

  • Definition and derivation of the phase velocity and group velocity of wave

  • Relation between group velocity and phase velocity ($V_{g}=V_{p}-\lambda \frac{dV_{p}}{d\lambda }$)

  • Group velocity is equal to particle velocity($V_{g}=v$)

  • Product of phase velocity and group velocity is equal to square of speed of light ($V_{p}.V_{g}=c^{2}$)

  • Heisenberg uncertainty principle

  • Generation of wave function for a free particle

  • Physical interpretation of the wave function

  • Derivation of time dependent Schrodinger wave equation

  • Derivation of time independent Schrodinger wave equation

  • Eigen Function, Eigen Values and Eigen Vectors

  • Postulate of wave mechanics or Quantum Mechanics

  • Quantum Mechanical Operators

  • Normalized and Orthogonal wave function

  • Particle in one dimensional box (Infinite Potential Well)

  • Minimum Energy Or Zero Point Energy of a Particle in an one dimensional potential box or Infinite Well

  • Normalization of the wave function of a particle in one dimension box or infinite potential well

  • Orthogonality of the wave functions of a particle in one dimension box or infinite potential well

  • Eigen value of the momentum of a particle in one dimension box or infinite potential well

  • Schrodinger's equation for the complex conjugate waves function

  • Probability Current Density for a free particle in Quantum Mechanics

  • Ehrenfest's Theorem and Derivation

  • Momentum wave function for a free particle

  • Wave function of a particle in free state

  • One dimensional Step Potential Barrier for a Particle

























  • Blog Archive