Absorption of all the energy of a incident photon by a free electron

A free electron cannot absorb all the energy of a Photon in mutual interaction.

Let us consider that a photon of energy $h \nu$ and momentum $\frac{h\nu}{c}$ collides with the free electron of mass $m$ at rest and the photon transfers its total energy and momentum to the electron. If $v$ is the velocity of the electron after a collision, its energy will be $ \frac{1}{2}mv^{2}$ and momentum $mv$.

If total incident energy $E$ is absorbed by an electron then applying the laws of conservation of energy and momentum, we have

Total energy before the collision= Total energy after the collision

$h \nu = \frac{1}{2}mv^{2} \qquad(1)$

According to de Broglie Hypothesis, the momentum of a particle

$P=\frac{h}{\lambda}$

$P=\frac{h \nu}{c} \qquad \left(\because \lambda=\frac{c}{\nu} \right)$

$mv=\frac{h \nu}{c} \qquad \left(\because P = mv \right)$

$h \nu = mvc \qquad(2)$

From equation $(1)$ and equation $(2)$

$\frac{1}{2}mv^{2}= m v c$

$\frac{1}{2}mv^{2}=m v c$

$v=2c$

Thus, the velocity of an electron comes out to be $2c$ which is not possible according to relativistic mechanics. Hence, a free electron cannot absorb all the energy of an incident photon.

Popular Posts

Study-Material













  • Classical world and Quantum world

  • Inadequacy of classical mechanics

  • Drawbacks of Old Quantum Theory

  • Bohr's Quantization Condition

  • Energy distribution spectrum of black body radiation

  • Energy distribution laws of black body radiation

  • The Compton Effect | Experiment Setup | Theory | Theoretical Expression | Limitation | Recoil Electron

  • Davisson and Germer's Experiment and Verification of the de-Broglie Relation

  • Significance of Compton's Effect

  • Assumptions of Planck’s Radiation Law

  • Derivation of Planck's Radiation Law

  • de-Broglie Concept of Matter wave

  • Definition and derivation of the phase velocity and group velocity of wave

  • Relation between group velocity and phase velocity ($V_{g}=V_{p}-\lambda \frac{dV_{p}}{d\lambda }$)

  • Group velocity is equal to particle velocity($V_{g}=v$)

  • Product of phase velocity and group velocity is equal to square of speed of light ($V_{p}.V_{g}=c^{2}$)

  • Heisenberg uncertainty principle

  • Mathematical equation of wave function of a free particle in simple harmonic motion

  • Physical interpretation of the wave function

  • Derivation of time dependent Schrodinger wave equation

  • Derivation of time independent Schrodinger wave equation

  • Eigen Function, Eigen Values and Eigen Vectors

  • Postulate of wave mechanics or Quantum Mechanics

  • Quantum Mechanical Operators

  • Normalized and Orthogonal wave function

  • Particle in one dimensional box (Infinite Potential Well)

  • Minimum Energy Or Zero Point Energy of a Particle in an one dimensional potential box or Infinite Well

  • Normalization of the wave function of a particle in one dimension box or infinite potential well

  • Orthogonality of the wave functions of a particle in one dimension box or infinite potential well

  • Eigen value of the momentum of a particle in one dimension box or infinite potential well

  • Schrodinger's equation for the complex conjugate waves function

  • Probability Current Density for a free particle in Quantum Mechanics

  • Ehrenfest's Theorem and Derivation

  • Momentum wave function for a free particle

  • Wave function of a particle in free state

  • One dimensional Step Potential Barrier for a Particle

























  • Blog Archive