Showing posts with label Electromagnetic Wave Theory. Show all posts
Showing posts with label Electromagnetic Wave Theory. Show all posts

Derivation of Maxwell's third equation

Maxwell's third equation is the differential form of Faraday's law induction.i.e

$\overrightarrow{\nabla} \times \overrightarrow{E}=- \frac{\partial{\overrightarrow{B}}}{\partial{t}}$

Derivation:

According to Faraday's Induced law-

$e=-\frac{\partial{\phi_{B}}}{\partial{t}} \qquad(1)$

According to Gauss's law of magnetism-

$\phi_{B}=\oint_{S} \overrightarrow{B}.\overrightarrow{dS} \qquad(2)$

Now substitute the value of $\phi_{B}$ in equation $(1)$

$e=-\frac{\partial}{\partial{t}} \oint_{S} \overrightarrow{B}.\overrightarrow{dS}$

$e=-\oint_{S} \frac{\partial{\overrightarrow{B}}}{\partial{t}}.\overrightarrow{dS} \qquad(3)$

The line integral of the electric field around a closed loop is called electromotive force. Thus

$e=\oint_{l} \overrightarrow{E}.\overrightarrow{dl} \qquad(4)$

from equation $(3)$ and $(4)$

$\oint_{l} \overrightarrow{E}.\overrightarrow{dl}=-\oint_{S} \frac{\partial{\overrightarrow{B}}}{\partial{t}}.\overrightarrow{dS} \qquad(5)$

According to Stroke's Theorem-

$\oint_{l} \overrightarrow{E}.\overrightarrow{dl}=\oint_{S} (\overrightarrow{\nabla} \times \overrightarrow{E}).\overrightarrow{dS} \qquad(6)$

from equation $(5)$ and equation $(6)$

$\oint_{S} (\overrightarrow{\nabla} \times \overrightarrow{E}).\overrightarrow{dS}=-\oint_{S} \frac{\partial{\overrightarrow{B}}}{\partial{t}}.\overrightarrow{dS}$

$\oint_{S} [(\overrightarrow{\nabla} \times \overrightarrow{E})+ \frac{\partial{\overrightarrow{B}}}{\partial{t}}].\overrightarrow{dS}=0$

If the surface is arbitrary then-

$(\overrightarrow{\nabla} \times \overrightarrow{E})+ \frac{\partial{\overrightarrow{B}}}{\partial{t}}=0$

$\overrightarrow{\nabla} \times \overrightarrow{E}=- \frac{\partial{\overrightarrow{B}}}{\partial{t}}$

This is Maxwell's third equation.

Derivation of Maxwell's second equation

Maxwell's second equation is the differential form of Gauss's law of magnetism.

As magnetic, monopoles do not exist in magnets and the magnetic field lines form closed loops. There is no source of the magnetic field from which the lines will either only diverge or only converge. Hence the divergence of the magnetic field is zero.

$\overrightarrow{\nabla}. \overrightarrow{B}=0$

Derivation-

According to Gauss's law of magnetism

$\oint_{S} \overrightarrow{B}. \overrightarrow{dS}=0 \qquad(1)$

Now apply the Gauss's divergence theorem-

$\oint_{S} \overrightarrow{B}. \overrightarrow{dS}= \oint_{v} \overrightarrow{\nabla}.\overrightarrow{B}.dV \qquad (2)$

from equation $(1)$ equation $(2)$

$\oint_{v} (\overrightarrow{\nabla}.\overrightarrow{B}).dV =0$

$\overrightarrow{\nabla}.\overrightarrow{B} =0$

Derivation of Maxwell's first equation

Maxwell's first equation is the differential form of Gauss's law of electrostatics.i.e

$\overrightarrow{\nabla}.\overrightarrow{E}= \frac{\rho}{\epsilon_{0}} $

Derivation:

According to Gauss's law for electrostatic-

$\oint_{s} \overrightarrow{E}.\overrightarrow{dS}=\frac{q}{\epsilon_{0}} \qquad(1)$

For continuous charge distribution inside the surface-

$q=\oint_{v}\rho.dV$

Where
$\rho$→Charge density
dV→Small volume

Now substitute the value of $q$ in equation $(1)$ then

$\oint_{s}\overrightarrow{E}.\overrightarrow{dS}=\frac{1}{\epsilon_{0}} \oint_{v}\rho.dV \qquad(2)$

Now according to Gauss's divergence theorem-

$\oint_{s} \overrightarrow{E}.\overrightarrow{dS}= \oint_{v} \overrightarrow{\nabla}.\overrightarrow{E} dV \qquad (3)$

From equation$(2)$ and equation$(3)$, we can write the above equation-

$\oint_{v} \overrightarrow{\nabla}.\overrightarrow{E} dV= \frac{1}{\epsilon_{0}} \oint_{v}\rho.dV $

$\oint_{v} \overrightarrow{\nabla}.\overrightarrow{E} dV- \frac{1}{\epsilon_{0}} \oint_{v}\rho.dV=0 $

$\oint_{v} (\overrightarrow{\nabla}.\overrightarrow{E}- \frac{\rho}{\epsilon_{0}})dV=0 $

On solving the above equation-

$\overrightarrow{\nabla}.\overrightarrow{E}- \frac{\rho}{\epsilon_{0}}=0 $

$\overrightarrow{\nabla}.\overrightarrow{E}= \frac{\rho}{\epsilon_{0}} $

This is Maxwell's first equation.

Popular Posts