Interference of light due to thin film

Derivation of interference of light due to thin-film: Let's consider a Ray of light $AB$ incident on a thin film of thickness $t$ and the refractive index of a thin film is $\mu$

The ray $AB$ is partially reflected and partially transmitted at $B$. The transmitted BC is against partially transmitted and partially reflected at $C$. The reflected ray $CD$ is partially reflected and partially refracted at $D$.
Propagation of light ray in thin film
Propagation of light ray in thin film
The interference pattern in reflected light will be due to ray $BF$ and $DH$ which are coherent as they are both derived from the same Ray $AB$.

The interference pattern in transmitted light will be due to ray $CI$ and $EJ$.

The path difference between $BF$ and $DH$ ray will be

$\Delta=\mu(BC+CD)-BG \qquad(1)$

The triangle $\Delta BCK$ and $\Delta CDK$ are congruent because

$\begin{Bmatrix} BK=KD \\ BC=CD \\ CK=t \end{Bmatrix} \qquad (2)$

From equation $(1)$ and $(2)$

$\Delta=2 \mu BC-BG \qquad(3)$

In $\Delta BCK$

$cos \: r= \frac{CK}{BC}$

$BC= \frac{t}{cos \: r} \qquad(4)$

In $\Delta BGD$

$sin \: i= \frac{BG}{BD}$

$BG= BD \: sin\: i $

$BG= (BK+KD)\: sin\: i $

$BG= 2BK \: sin\: i \qquad(5)$ {From eqaution $(2)$}

Again In $\Delta BCK$

$tan \:r = \frac{BK}{CK}$

$BK=t.tan\:r \qquad(6)$

Put the value of $BK$ in equation $(5)$

$BG=2t\:sin \:i .tan\: r$

$BG=2t\:sin \:i .\frac{sin \: r}{cos \: r}$

$BG= 2t \frac{sin \:i}{sin \: r} \frac{sin^{2} \:r}{cos \: r}$

$BG=2\mu t \frac{sin^{2} \:r}{cos \: r} \qquad (7)\qquad \left( \mu =\frac{sin \:i}{sin \: r}\right)$

Now put the value of $BG$ and $BC$ in equation $(3)$

$\Delta= \frac{2 \mu t}{cos \: r}-2\mu t\frac{sin^{2} \:r}{cos \: r}$

$\Delta=\frac{2 \mu t}{cos \:r} \left[1-sin^{2} \:r \right]$

$\Delta=2 \mu t \frac{cos^{2} \:r}{cos \:r} $

$\Delta=2 \mu t \: cos \:r$

Interference in a reflected ray:

The ray $BF$ suffers phase change of $\pi$ due to reflection from the denser medium at $B$. Therefore the path difference of $\frac{\lambda}{2}$ is introduced between two rays due to reflection-

$\Delta= 2\mu t \: cos\:r \pm \frac{\lambda}{2}$

Constructive Interference due reflected ray:

for constructive interference

$\Delta=n \lambda$

so from the above equations, we get

$2\mu t \: cos\: r \pm \frac{\lambda}{2}=n \lambda$

$2\mu t \: cos\: r = (2n \pm 1)\frac{\lambda}{2}$

Destructive Interference due to reflected ray:

for destructive interference

$\Delta=(2n \pm 1)\frac{\lambda}{2}$

so from the above equations, we get

$2\mu t \: cos\: r \pm \frac{\lambda}{2}=(2n \pm 1)\frac{\lambda}{2}$

$2\mu t \: cos\: r =n \lambda$

Interference in transmitted ray:

The ray $CI$ and $EJ$ in transmitted Ray have the same path difference as a reflected ray. There is not any change in phase for $CI$ due to reflection as it gets transmitted at $C$. The ray $EJ$ also does not undergo phase change due to reflection as it is reflected from the rarer medium at $C$ and $D$.

$\Delta= 2\mu t \: cos\:r $

Constructive Interference due to transmitted ray:

for constructive interference

$\Delta=n \lambda$

so from the above equations, we get

$2\mu t \: cos\: r =n \lambda$

Destructive Interference due to transmitted ray:

for destructive interference

$\Delta=(2n \pm 1)\frac{\lambda}{2}$

so from the above equations, we get

$2\mu t \: cos\: r =(2n \pm 1)\frac{\lambda}{2}$

$2\mu t \: cos\: r =n \lambda$

Popular Posts

Study-Material













  • Classical world and Quantum world

  • Inadequacy of classical mechanics

  • Drawbacks of Old Quantum Theory

  • Bohr's Quantization Condition

  • Energy distribution spectrum of black body radiation

  • Energy distribution laws of black body radiation

  • The Compton Effect | Experiment Setup | Theory | Theoretical Expression | Limitation | Recoil Electron

  • Davisson and Germer's Experiment and Verification of the de-Broglie Relation

  • Significance of Compton's Effect

  • Assumptions of Planck’s Radiation Law

  • Derivation of Planck's Radiation Law

  • de-Broglie Concept of Matter wave

  • Definition and derivation of the phase velocity and group velocity of wave

  • Relation between group velocity and phase velocity ($V_{g}=V_{p}-\lambda \frac{dV_{p}}{d\lambda }$)

  • Group velocity is equal to particle velocity($V_{g}=v$)

  • Product of phase velocity and group velocity is equal to square of speed of light ($V_{p}.V_{g}=c^{2}$)

  • Heisenberg uncertainty principle

  • Generation of wave function for a free particle

  • Physical interpretation of the wave function

  • Derivation of time dependent Schrodinger wave equation

  • Derivation of time independent Schrodinger wave equation

  • Eigen Function, Eigen Values and Eigen Vectors

  • Postulate of wave mechanics or Quantum Mechanics

  • Quantum Mechanical Operators

  • Normalized and Orthogonal wave function

  • Particle in one dimensional box (Infinite Potential Well)

  • Minimum Energy Or Zero Point Energy of a Particle in an one dimensional potential box or Infinite Well

  • Normalization of the wave function of a particle in one dimension box or infinite potential well

  • Orthogonality of the wave functions of a particle in one dimension box or infinite potential well

  • Eigen value of the momentum of a particle in one dimension box or infinite potential well

  • Schrodinger's equation for the complex conjugate waves function

  • Probability Current Density for a free particle in Quantum Mechanics

  • Ehrenfest's Theorem and Derivation

  • Momentum wave function for a free particle

  • Wave function of a particle in free state

  • One dimensional Step Potential Barrier for a Particle

























  • Blog Archive