‏إظهار الرسائل ذات التسميات Numerical Problems and Solutions. إظهار كافة الرسائل
‏إظهار الرسائل ذات التسميات Numerical Problems and Solutions. إظهار كافة الرسائل

Numerical Problems and Solutions of Centripetal Force and Centripetal Acceleration

Solutions to Numerical Problems of the Centripetal Force and Centripetal Acceleration

Numerical Problems and Solutions

Q.1 An object of mass $0.20 \: Kg$ is being revolved in a circular path of diameter $2.0 \: m$ on a frictionless horizontal plane by means of a string. It performs $10$ revolutions in $3.14 \: s$. Find the centripetal force acting on an object.

Solution:
Given that:
Mass of body $(m)=0.20 \: Kg$
Diameter of Circular path $(d)=2.0: m$
Number of revolutions $(n)=10$
Time taken to complete $(10)$ revolution$(t)=3.14 s$
The centripetal force acting on a body $(F)=?$
Now the centripetal force:
$F=m r \omega^2$
$F=m r \left( \frac{2 \pi n}{t} \right)^2$
Now Substitute the given values in the centripetal force formula:
$F=0.20 \times 1 \left( \frac{2 \times 3.14 \times 10}{3.14} \right)^2$
$F=0.8 N$

Q.2 A car of mass $1200 Kg$ is moving with a speed of $10.5 ms^{-1}$ on a circular path of radius $20 m$ on a level road. What will be the frictional force between the car and the road so that the car does not slip?

Solution:
Given that:
Mass of car $(m) = 1200 \: Kg$
Speed of car $(v) = 10.5: ms^{-1}$
The radius of circular path $(r)= 20 m$
The frictional force $(F)=?$
The frictional force $(F)$ should be equal to the required centripetal force i.e
$F=\frac{mv^{2}}{r}$
Now Substitute the given values in the centripetal force formula:
$F=\frac{1200 \times (10.5)^{2}}{20}$
$F=6.615 \times 10^{3} N$


Q.3 A string can bear a maximum tension of $50 N$ without breaking. A body of mass $1 kg$ is tied to one end of $2 m$ long piece of the string and rotated in a horizontal plane. Find the maximum linear velocity with which the string would not break.

Solution:
Given that:
Maximum tension on the string without breaking $(F)=50 N$
mass of the a body $(m)=1 Kg$
length of the string $(l)=2 m$
The maximum velocity with which the string would not break $(v)=?$
We know that the centripetal force:
$F=\frac{mv^{2}}{r}$
$v=\sqrt{\frac{F \: r}{m}}$
Now Substitute the given values in the centripetal force formula:
$v=\sqrt{\frac{50 \times 2 2}{1}}$
$v=10 ms^{-1}$


Q.4 The moon revolves around the earth in $2.36 \times 10^{6} s$ in a circular orbit of radius $3.85 \times 10^{5} Km$. Calculate the centripetal acceleration produced in the motion of the moon.

Solution:
Given that:
The radius of circular orbit of the moon $(r)=3.85 \times 10^{5} Km = 3.85 \times 10^{8} m$
Time taken to complete one revolution $(T)=2.36 \times 10^{6} s$
Centripetal acceleration produced in the motion of the moon $=?$
The centripetal acceleration:
$a= \omega^{2} r $
$a= \left( \frac{2 pi}{T} \right) r \qquad \left( \because \omega= \frac{2 pi}{T} \right) $
Now Substitute the given values in the centripetal acceleration formula:
$a= \left( \frac{2 \times 3.14}{2.36 \times 10^{6}} \right) \times 3.85 \times 10^{8} $
$a=2.73 \times 10^{-3} ms^{-2} N$


Q.5 Calculate the centripetal acceleration at a point on the equator of the earth. The radius of the earth is $6.4 \times 10^{6} m$ and it completes one rotation per day about its axis.

Solution:
Given that:
Radius of earth $(r)=6.4 \times 10 ^{6} m$
Time taken to complete one rotation per day about its axis$(T)=24 \times 60 \times 60 s$
centripetal acceleration at a point on equator $=?$
The centripetal acceleration:
$a= \omega^{2} r $
$a= \left( \frac{2 pi}{T} \right) r \qquad \left( \because \omega= \frac{2 pi}{T} \right) $
Now Substitute the given values in the centripetal acceleration formula:
$a= \left( \frac{2 \times 3.14}{24 \times 60 \times 60} \right) \times 6.4 \times 10^{6} $
$a=3.37 \times 10^{-2} ms^{-2} N$


Popular Posts

Study-Material













  • Classical world and Quantum world

  • Inadequacy of classical mechanics

  • Drawbacks of Old Quantum Theory

  • Bohr's Quantization Condition

  • Energy distribution spectrum of black body radiation

  • Energy distribution laws of black body radiation

  • The Compton Effect | Experiment Setup | Theory | Theoretical Expression | Limitation | Recoil Electron

  • Davisson and Germer's Experiment and Verification of the de-Broglie Relation

  • Significance of Compton's Effect

  • Assumptions of Planck’s Radiation Law

  • Derivation of Planck's Radiation Law

  • de-Broglie Concept of Matter wave

  • Definition and derivation of the phase velocity and group velocity of wave

  • Relation between group velocity and phase velocity ($V_{g}=V_{p}-\lambda \frac{dV_{p}}{d\lambda }$)

  • Group velocity is equal to particle velocity($V_{g}=v$)

  • Product of phase velocity and group velocity is equal to square of speed of light ($V_{p}.V_{g}=c^{2}$)

  • Heisenberg uncertainty principle

  • Generation of wave function for a free particle

  • Physical interpretation of the wave function

  • Derivation of time dependent Schrodinger wave equation

  • Derivation of time independent Schrodinger wave equation

  • Eigen Function, Eigen Values and Eigen Vectors

  • Postulate of wave mechanics or Quantum Mechanics

  • Quantum Mechanical Operators

  • Normalized and Orthogonal wave function

  • Particle in one dimensional box (Infinite Potential Well)

  • Minimum Energy Or Zero Point Energy of a Particle in an one dimensional potential box or Infinite Well

  • Normalization of the wave function of a particle in one dimension box or infinite potential well

  • Orthogonality of the wave functions of a particle in one dimension box or infinite potential well

  • Eigen value of the momentum of a particle in one dimension box or infinite potential well

  • Schrodinger's equation for the complex conjugate waves function

  • Probability Current Density for a free particle in Quantum Mechanics

  • Ehrenfest's Theorem and Derivation

  • Momentum wave function for a free particle

  • Wave function of a particle in free state

  • One dimensional Step Potential Barrier for a Particle

























  • Blog Archive